

UA Health Services

Enterprise Database Management

Group G – Bits Please

Aditya Singh
Affan Ahmed Kazim

Anmol Sabharwal
Keerthana Jagannatha

Niriksha Dalal
Viraj Singh

 1

Table of Contents

Table of Contents .. 1

Chapter 1: Requirements analysis document .. 3

Summary ... 3

Requirements and Motivation ... 3

Chapter 2: ER Diagram ... 6

Data Dictionary .. 6

Assumptions .. 17

Chapter 3: Normalized relational schema .. 19

Chapter 4: Queries ... 23

Complex Queries .. 23
Query 1 – Diagnosis Appropriateness .. 23
Query 2 – Case Count Analysis .. 24
Query 3 - Seasonal Symptom and Drug Pattern ... 26
Query 4 - Best performing employees in each employee category ... 27
Query 5 – Diagnosis Insured ... 28
Query 6 – Patient Historical Statistics .. 29
Query 7 – Student Subsidy Eligibility .. 31
Query 8 – Available Time Slots for Appointments ... 31
Query 9 – Crew Classification .. 32
Query 10 – Patient Case History ... 33
Query 11 – Time and Trip Analysis based on a Symptom ... 34
Query 12 – Pharmacy Medicine Availability .. 35

Chapter 5: Triggers and Procedures ... 37

Triggers .. 37
Trigger 1 - trig_trip_details ... 37
Trigger 2 - generate_bill ... 38
Trigger 3 - chat_details_doc ... 39
Trigger 4 - age_calculation_emp .. 40
Trigger 5 - age_calculation_student .. 41
Trigger 6 - appointmentendtime_slot .. 41
Trigger 7 - actuallabtestid_trigger ... 42
Trigger 8 - appointment_id_trig .. 42
Trigger 9 - case_new_id ... 42
Trigger 10 - feedback_id_trig ... 43
Trigger 11 - lab_id_trig ... 43
Trigger 12 - medicine_id_trig ... 44
Trigger 13 - patient_trigger ... 44
Trigger 14 - pharmacy_id_trig .. 44
Trigger 15 - prescription_trigger .. 45

Procedures .. 45
Procedure 1 - EMPLOYEE_LOYALTYPOINTS .. 45
Procedure 2 - password_check .. 46
Procedure 3 - signup_proc2 .. 46

Functions ... 47
Encrypt .. 47

 2

Decrypt ... 48

Chapter 6: Interface (UI) and Reports ... 49

PATIENT ... 49

DOCTOR ... 49

ADMINISTRATOR ... 49

WEB APP WALKTHROUGH ... 49

STEPS IN DEMO .. 49

Chapter 7: Conclusions and implementation plan. .. 51

Lessons Learnt ... 51

Changes ... 51

Steps to implement on a real-world database .. 51
Prerequisites .. 51
Application ... 51
Web design and UI ... 51
Cloud Hosting ... 52
Cost Breakup Assumptions ... 52

APPENDIX – Create Table Scripts .. 54

References ... 70

User Interface .. 70

Function .. 70

 3

Chapter 1: Requirements analysis document

Summary
Our database and application provide an in-house solution to manage healthcare at the
University of Arizona. Over 50,000 students get easy access to good healthcare on-the-go,
saving them time and effort. A well-integrated database that relates elements like the
pharmacy and ambulance services helps UA health services accomplish its goal of providing
quality health services for students. A database approach further simplifies managing the
hospital and its operations.

Key users of this application are
1. University of Arizona students
2. Doctors and Administrator of UA Health.

Requirements and Motivation
UA Health is a big part of the University of Arizona. We all rely and depend on them for a
healthy living and for medical care. UA Health has gone above and beyond to ensure quality
care is provided to students and faculty members working at the University. UA Primary
Campus Health is an inhouse application, connecting wildcats to doctors available at Campus
Health. Our application is more diverse and offers a more personalized health care experience
that cannot be matched by a third-party application.

UA Primary Campus Health is an online health service for students of the University of
Arizona. This new initiative by UA Health allows students to reach a doctor for immediate
primary care when visiting the hospital physically is a challenge. All students registered with
the University of Arizona get free access to the online application. The application allows
patients to chat with doctors and specialists and get medical prescriptions. Since some medical
conditions are difficult to comprehend virtually, doctors and patients can request an in-person
appointment after their discussion. The doctor may recommend the patient to visit a Lab to get
medical tests done. UA Primary Campus Health is connected to the pharmacies on campus.

When the students first sign up, they are registered as Patients with a unique PatientID, a login
and password details. After signing in, a patient-doctor chat session is initiated where students
can discuss their ailments using text messages or pictures. Patient data is internal to UA
Primary Campus Health, it is maintained by the department independent of the student data
maintained by the University. The University student database contains students phone
number, first and last name, email address, blood group and an address (zip, street and building
number). Each student is uniquely identified by their studentID. Additional patient information
is inherited from the UAccess Database of the student after registration.

Each time a doctor examines a patient, it is recorded as a unique interaction (referred to as a
‘case’) in a Case Details register. Each case has a unique caseID, a status attribute to check if
the case is still open or closed. Case Details also contain the symptoms that the patient has
reported.

All symptoms have a name and type, they are also uniquely identifiable. Doctors record their
diagnosis with their ICD codes (International Statistical Classification of Diseases), description

 4

of diagnosis and ICD code version. The doctor records the symptoms of the patient, the
symptoms contains a symptomID which uniquely defines the symptom name and type. The
severity of the ailment is reported in the case details, which is useful when the doctor needs to
escalate the case and call an ambulance. Each case has diagnosis details. Each diagnosis can
have notes and comments further describing the case. The patient can book an appointment for
an in-person examination. Appointments are tracked with a unique ID are made for a given
time, for a fixed duration of 15 minutes or 30 minutes. There can be different types of
appointments based on the type of consultation. A phone number is provided for confirming
or rescheduling the appointment. A patient may never book an appointment or book an
appointment more than once.

The case details are used to generate billing details which are directly sent to the specific
insurance company for claims. Each bill has an ID, total cost for examination, any additional
charges incurred, the date the bill was generated and a status to check if the bill has been
cleared. UA Primary Campus Health stores information required to reach out to the insurance
companies such as the company name, company id, address, insurance provider license
number, email address and phone number. Each student is insured by one insurance company.

After examining the patient, the doctor may prescribe a prescription. Each prescription contains
the date and prescriptionID. Prescriptions may contain all tests which are performed in labs.
All the lab tests are stored in a common location
The doctor may prescribe lab tests as part of the prescription. Each prescription is unique and
has a date. The type of prescription is also recorded for the purpose of regulation. If the
prescription is for drugs, it contains the dosage of the medicine. If the prescription is for lab
tests, the test name, test fee and test ID is recorded.

If the doctor feels the need for further diagnosis, a prescription for lab tests can be written.
Each lab is differentiated by their lab id, tests available, phone number and address (building
number, street and zip). Multiple tests can be performed at a single lab. Once the tests are
performed, each lab generates medical reports for the patient. One report is generated per
patient. A medical report has an ID, report name and date.

Pharmacies on campus have a unique ID, Address (with ZIP, Building_No and Street) and
phone number. Each medicine stored in the pharmacy has a unique ID, commercial product
name, brand, expiry date and type - additional information used to classify if the medicine is
OTC, non-drug. A count of each medicine is also stored to check for availability. We know a
medicine may be comprised of many drugs, the composition of each is tracked in ‘drugs’. The
UA Pharmacy offers promotions and student discounts throughout the year, each discount has
a proteinID, discount percentage and start date and end date during which the offer is valid. As
a convenience option, drugs may be requested from the pharmacy. We store the frequency and
composition of drugs that are prescribed by the doctor.

They are currently in the process of setting up a new student group who are employed as
campus delivery associates. These associates will pick up medicines from the pharmacy and
deliver them to the patients. These associates are hired on a need basis, i.e. they are hired
only when a delivery has to be made. At a time there can be no associates or multiple
associates at each pharmacy. Student associates are identified with a name, ID, their shift
timings (start time and end time) and driving licence information. A student organization is in
charge of employing and managing the delivery associates. The organization keeps a count of
the number of students it currently employs. At any given time, the organization will have at

 5

least five associates. The organization has a phone number, email and office address for
contact.

UA Health is supported by employees which comprises of doctors, pathologists, nurses, ward
boys, pharmacists and drivers. Employees have an employee ID, name (first, middle and last),
date of hire, date of birth, age, gender, SSN, phone number, email address and shift timings.
Apart from this information, UA Health also tracks addition information for each employee
category. Doctors have their legal registration number, highest degree earned and on call status.

 6

Chapter 2: ER Diagram

We have created Entity-Relationship model by analysing the requirements for an on-the-go
health service application. We have carefully designed the entities and relationships based on
real world scenario.
Please find the ER attached below as an object. We’ll also be adding it separately in the
Dropbox.

Data Dictionary

UA_Onthego_ER_Diag
ram.vsdx

Schema Construct Construct Description Other Description

ACTUAL LAB TESTS

An entity to store the
lab tests that were
prescribed and
actually perform.

• actuallabtestID
To identify the lab
tests that were
performed

Identifying
Attribute

• result
To store the results of
the tests

AMBULANCES It is an aggregate
entity

• ambulanceID
A particular ID issued
to each ambulance

Identifying
Attribute

• vehiclenumber Number plate of the
vehicle

• availability
To check if the
particular ambulance
is available

APPOINTMENTS
An entity class to store
appointment
information

• appointmentID
Appointment
identification

Identifying
Attribute

• starttime
Time for which
appointment was
booked

• endtime
Time, if the
appointment was
rescheduled

 7

• type
Type of the
appointment

• appdate
Date for which the
appointment is
booked.

Appoints

A relationship that
models Pharmacy
appoints a delivery
Associate for Delivery

BILLING DETAILS An entity class to store
billing details

• totalcost Cost of treatment

• billID Bill identification Identifying
Attribute

• additionalcharges
If any additional
charges other than
usual

• billdate
Date on which bill was
generated

• billstatus
Status of the bill i.e if
paid or not

Books
A relationship that
models Patient books
an appointment

Carry out It is the constrained
relationship

Carried

CASE DETAILS
An entity to store all
the details of
particular case

• caseID To identify case Identifying
Attribute

• status
To check if the case is
closed or open

• severityindex Severity of the case

• duration
Duration for which the
particular case
continued

• datetime
Date and time when
the case was created

CHAT DETAILS It is a weak entity to
store chat details

chatID To identify chat

chatactive
A Boolean to store if
the chat is active or
not

 8

initial_symptoms
To store the initial
system that a patient
reports

Chatswith

A relationship that
models chat details,
patients and
prescription

Consist

A relationship that
models the
relationship between
medicine prescribed
and its dosage.

Consist of

A relationship that
models the different
personnel who would
board the ambulance

Contains
A relationship that
models the symptoms
stored in case details

Creates
A relationship that
models the labs who
create medical reports

CREW

• crewID It stores the ID of the
crew

Identifying
Attribute

• crewname
It stores the name of
the crew

DELIVERY ASSOCIATES
An entity to store the
information about
delivery associate

• name
Name of delivery
associate

• shifttime
Shift time of the
associate

o shiftstarttime
Start time of the shift
of the delivery
associate

o shiftendtime
End time of the shift
of the delivery
associate

• dlnumber
Driving License
number

• associateID
To identify the
delivery associate

Identifying
Attribute

 9

DELIVERY ORGANIZATIONS
The organizations that
provides delivery
associates

• organizationID
To identify the
organization

Identifying
Attribute

• organizationname
Name of the
organization

• noofemployees Total delivery
associates employed

• Address
à buildingno
à street
à zip

• phoneno

• emailaddress Multi-valued
attribute

DIAGNOSES

An entity to store the
findings and
recommendations of
doctor

• ICDcode
Medical codes for
various illnesses

Identifying
Attribute

• description
Description of the
illness

• version
DIAGNOSIS DETAILS

• notes
Captures the notes
taken by doctors

• comments

• diagnosis_complete
Boolean to store the
status of diagnosis

Done By
A relationship that
models the labs
conducting tests

DRUG DETAILS
To store the frequency
and composition a
particular drug

Weak Entity

frequency

It stores the frequency
by which the medicine
is supposed to be
consumed

composition
It stores the
composition of the
drugs in a medicine

 10

EMPLOYEE RATINGS
An entity to store the
ratings for the
employees

• employeeratingid
Employee id to
identify it

Identifying
Attribute

• remarks
Description of the
rating given

• ratingdate

EMPLOYEES
An entity to store the
information of
employees

• employeeID To identify the
employee

Identifying
Attribute

• name Composite
attribute

à firstname
à middleinitial
à lastname

• hiredate Date of hiring
• dateofbirth
• age
• gender
• ssn
• phonenumber

• emailaddresses Multi valued
Attribute

• shift time
Shift timing of the
employee

à starttime Login time
à endtime Logout time

• loyaltypoints
Points earned through
the loyalty program
run by the hospital

• type
To classify various
types of employees

o DOCTORS

A subclass of
employee to store
information about
Doctors

§ GENERAL PHYSICIANS
A subclass of doctors
to store information
about physicians

• certification Certification name
• certificationexpirydate

• istrainee
Whether the physician
is trainee or not

 11

§ SPECIALISTS Doctors from different
departments

• ispermanent
A visiting doctor or
permanent

• registrationnumber
• highestdegree
• username
• password

• oncall Available on call or
not

o PATHOLOGISTS

A subclass of
employee to store
information about
Pathologists

• pathologistregistrationno
• certification

o NURSES

A subclass of
employee to store
information about
nurses

• nursinglicenseno
• hourlybillingrate
• type

o EMT

A subclass of
employee to store
information about
Wardboys

• level

o PHARMACIST

A subclass of
employee to store
information about
pharmacists

• pharmacistlicenseno

o DRIVER

A subclass of
employee to store
information about
ambulance drivers

• dlnumber
Driving license
Number

Employs

A relationship that
models delivery
organization
employing delivery
associates

Examines A relationship that
models the doctor

 12

examining the
patients

FEEDBACKS

An entity class to store
the feedback received
from users of the
service

• id To identify a feedback Identifying
Attribute

• comments
• datetime

Fulfilled by

It models the
relationship between
the prescription and
pharmacists.

Generated For

A relationship that
models the medical
reports generated for
patients

Generates

It models the
relationship between
case details and billing
details.

Givenin

It models the
relationship between
actual lab tests,
medical reports and
case details.

Have
A relationship that
models the employees
ratings having ratings

INSURANCE COMPANIES

An entity to store
information about
various insurance
companies available

• inscompanyID To identify the
company

Identifying
Attribute

• address

• inscomlicenseno
License number of the
insurance company

• inscompanyname Name of the insurance
company

• emailaddress
• phonenumber

Insured By A relationship that
models students being

 13

insured by an
insurance company

LABS
An entity to store the
information about the
laboratories

• labname

• labID To identify the lab Identifying
Attribute

• phoneno

• address Composite
attribute

à zip
à buildingno
à street

• emailaddress
Names of the test
available in a lab

LAB TESTS

To store information
about the tests
conducted by labs

• testID To identify lab test Identifying
Attribute

• testname Name of the test
• fee Fee for the test

MEDICAL REPORTS
An entity to store the
medical reports
created

• reportID To identify report Identifying
Attribute

• reportname
• date

MEDICINES
To store the
information about the
medicines

• drugs

• count Number of medicines
left in stock

• medicineID To identify medicine Identifying
Attribute

• productname

• brand
To store the name of
the brand to which
the medicine belongs

• expirydate
• type

 14

Offers
A relationship that
models the pharmacy
offering promotions

Onboard

It models the
relationship between
crew, ambulances and
trip details.

PATIENTS
An entity to store the
information about
patients

• patientID To identify patients Identifying
Attribute

• username
• password

PHARMACIES
An entity that stores
the information about
the pharmacies

• pharmacyID To identify pharmacy Identifying
Attribute

• phonenumber
• emailaddress

• address Composite
attribute

à zip
à buildingnumber
à street

Prescribes

It models the
relationship between
doctor and
prescription

PRESCRIPTIONS
To store all the
information about
prescription

• prescriptionID
To identify
prescription

Identifying
Attribute

• date
• type

Presentin

It models the
relationship between
prescription and case
details

PROMOTIONS
An entity to tract the
promotions offered by
the pharmacies

• promotionID
To identify a particular
offer

Identifying
Attribute

 15

• startdate
• enddate
• Discount

Provides

A relationship that
models the patients
providing feedback for
services

RATINGS
An entity to store the
scale used in rating
the employee

• ratingID To identify a scale Identifying
Attribute

• description

Receives

A relationship that
models the patient
receiving the
prescription

Records

A relationship that
models the diagnosis
recorded in case
details

Register As
A relationship that
models the student
registering as patient

Requestedto

A relationship to
model the drugs
requested from
pharmacy

Sends

A relationship that
models the billing
details being sent to
insurance company

SPECIALIZATIONS

• specializationID
To identify the
specialization

Identifying
Attribute

• description

• specializationname
Name of the
specialization of the
doctor

Specializesin

A relationship that
model the specialist
who specializes in a
particular department

Stocks
A relationship that
models the pharmacy
stocking the medicine

 16

STUDENTS
An entity to store the
information about the
students

• address Composite
attribute

à dorm
à street
à zip
à buildingnumber

• studentID To identify the
student

Identifying
Attribute

• phonenumber
• name

à firstname
à middlename
à lastname

• email

• bloodgroup
Blood group of the
student

SYMPTOMS An entity containing a
list of symptoms

• symptomID To identify a symptom Identifying
Attribute

• name

• type To store the type of
symptom

Triggers

It models the
relationship between
case details and trip
details.

TRIP DETAILS

• tripID
To identify a particular
trip

Identifying
Attribute

• timeoftrip
It stores the date and
time of the trip

• address Composite
attribute

à zip
à buildingnumber
à street

Works
A relationship that
models a pathologists
working in a lab

Works In
A relationship that
models a pharmacist
working in a pharmacy

 17

Assumptions

1. The student delivery associate is a temporary employee, they might or might not be a part

of the student delivery organisation.
2. All university of Arizona organizations should have a Unique organisation ID, so student

delivery organisation too have an organisation ID
3. Student Delivery Organization should have 5 or more student delivery associates.
4. There is more than 1 pharmacy on campus, all pharmacies are open 24/7.
5. A pharmacy can have 1 or many pharmacists, a pharmacist can be associated to only 1

pharmacy.
6. One promotion should be associated with at least one pharmacy and can be associated

with multiple pharmacies.
7. Our patients are only students. Each student who registers as a patient should have an

insurance plan, which covers all on the go services.
8. A patient can give multiple feedback, group feedback involving more than 1 patient is not

allowed.
9. There are multiple labs on the campus, each lab should do at least one type of test and can

do multiple types of tests.
10. Each test is available in one of the labs on campus.
11. Every ambulance should have 1 nurse, 2 ward boys and 1 driver when it is sent out.
12. A case will have at least 1 symptom associated with it and must have 1 or multiple

diagnosis.
13. An employee can be in the employee rating table only if they have a rating.
14. Specialists can be full time or visiting, physician can either permanent or trainee. If there

is a specialization, our hospital has at least one doctor who specializes in it.
15. Each employee can receive multiple rating, one rating per quarter. The ratings they

receive are predefined and saved in the rating table.
16. A lab can have multiple pathologists working with it, a pathologist can work with only 1

lab.
17. We have a list of lab tests available at UA. Each lab supports a set of tests, and every time

a test is conducted the details of the performed lab test is updated in Actual Lab test.
18. A patient can book multiple appointments, each appointment is associated with only 1

patient.
19. An interaction between a doctor and a patient creates a Case, there can be multiple cases

between a patient and doctor.
20. 1 case must generate at least 1 bill, 1 bill can only be associated with 1 case.
21. 1 bill can be sent to only 1 insurance comp, whereas each of the partner insurance

companies might have 0 bills or multiple bills.
22. Every interaction creates a case and chat details is also saved for each case. For each case,

doctor prescribes a prescription.
23. A prescription can have no or many lab tests prescribed and have no or many drugs

prescribed.
24. A prescription will have the drugs and their dosage, there can be multiple medicines for

the same drug. A medicine can have 1 or more drugs.
25. Prescription has drug details, with frequency and composition of the prescribed

consumption.
26. A prescription is fulfilled by a pharmacist from one of the pharmacies and is delivered by

a delivery person

 18

27. A medical report is generated for a case. A report contains case details as well as the lab
results.

 19

Chapter 3: Normalized relational schema

We have normalized the tables to 4NF, for all our entities and relationships as per our
business requirements.

1. ACTUAL_LAB_TESTS (actuallabtestID, result, labtestID, labID)
FORIEGN KEY labtestID REFERENCES LAB_TESTS
FORIEGN KEY (labID, labtestID) REFERENCES LABTESTS_DONEBY

2. AMBULANCES (ambulanceID, vehiclenumber, availability)

3. APPOINTMENT_TIME_SLOTS (slotID, startTime, endTime)

4. APPOINTMENTS (appointmentID,type, starttime, endtime, appdate, patientid,
doctorID)

FORIEGN KEY patientID REFERENCES PATIENTS (patientID)
FORIEGN KEY doctorID REFERENCES DOCTORS (doctorID)

5. BILLING_DETAILS (billID, totalcost, additionalcharges, billdate, billstatus,

inscompanyID, caseID)

FOREIGN KEY inscompanyID REFERENCES INSURANCE_COMPANIES
(inscompanyID)
FOREIGN KEY caseID REFERENCES CASE_DETAILS (caseID)

6. CASE_DETAILS (caseID, status, datetime, severity, duration_min, doctorID,patientID)

FOREIGN KEY doctorID REFERENCES DOCTORS (doctorID)
FOREIGN KEY patientID REFERENCES PATIENTS (patientID)

7. CASE_REPORT_LAB (reportID, actuallabtestID, caseID)

FOREIGN KEY reportID REFERENCES MEDICALREPORTS (reportID)
FOREIGN KEY actuallabtestID REFERENCES ACTUAL_LAB_TESTS
(actuallabtestID)
FOREIGN KEY caseID REFERENCES CASE_DETAILS (caseID)

8. CASE_SYMPTOMS (caseID, symptomID)

FOREIGN KEY caseID REFERENCES CASE_DETAILS (caseID)
FOREIGN KEY symptomID REFERENCES SYMPTOMS (symptomID)

9. CHAT_DETAILS (chatID, chatActive, initial_symptoms, docID, pID)

FOREIGN KEY docID REFERENCES DOCTORS (doctorID)
FOREIGN KEY pID REFERENCES PATIENTS (patientID)

10. CREW_DRIVERS (crewID, driverID)

FOREIGN KEY crewID REFERENCES CREWS (crewID)
FOREIGN KEY driverID REFERENCES DRIVERS (driverID)

11. CREW_EMT (crewID, EMTID)

FOREIGN KEY crewID REFERENCES CREWS (crewID)
FOREIGN KEY emtID REFERENCES EMT (emtID)

 20

12. CREW_NURSES (crewID, nurseID)

FOREIGN KEY crewID REFERENCES CREWS (crewID)
FOREIGN KEY nurseID REFERENCES NURSES (nurseID)

13. CREWS (crewID, crewname)

14. DELIVERY_ASSOCIATES (delassociateID, delassociatename, dlnumber,

shiftstarttime, shiftendtime, delorgID)
FOREIGN KEY delorgID REFERENCES DELIVERY_ORGANIZATIONS
(delorgID)

15. DELIVERY_ORGANIZATIONS (delorgID, organizationname, noofemployees,

buildingno, street, zip, phonenumber, emailaddress)
Check Constraint (phoneno not like '%[^0-9]%')

16. DIAGNOSES (ICDCode, description, version)

17. DIAGNOSIS_DETAILS (caseID, ICDCode, notes, comments, diagnosis_complete)

FOREIGN KEY caseID REFERENCES CASE_DETAILS (caseID)
FOREIGN KEY ICDCode REFERENCES DIAGNOSES (ICDCode)
Check Constraint (diagnosis_complete IN('Yes','No'))

18. DOCTORS (doctorID, registrationnumber, highestdegree, oncall)

FOREIGN KEY doctorID REFERENCES EMPLOYEES (employeeID)

19. DRIVERS (driverID, dlno)
 FOREIGN KEY driverID REFERENCES EMPLOYEES (employeeID)

20. DRUG_DETAILS (prescriptionID, medicineID, frequency, composition)

FOREIGN KEY medicineID REFERENCES MEDICINES
FOREIGN KEY prescriptionID REFERENCES PRESCRIPTIONS
(prescriptionID)

21. EMPLOYEE_RATINGS (employeeratingID, remarks, ratingdate, ratingID)

FOREIGN KEY ratingID REFERENCES RATINGS (ratingID)

22. EMPLOYEE_RATINGS_RECIEVED (employeeID, employeeratingID)
FOREIGN KEY employeeID REFERENCES EMPLOYEES (employeeID)
FOREIGN KEY employeeratingID REFERENCES EMPLOYEE_RATINGS
(employeeratingID)

23. EMPLOYEES (employeeID, firstname, middleinitial, lastname, hiredate, dateofbirth,bage,

gender, SSN, phonenumber,loyaltypoints, emailaddress,shiftstarttime, shiftendtime, type)
UNIQUE CONSTRAINT(SSN)

24. EMT (emtID, levels)

FOREIGN KEY emtID REFERENCES EMPLOYEES (employeeID)

25. FEEDBACKS (feedbackID, comments, datetime, patientID)

 21

FOREIGN KEY patientID REFERENCES PATIENTS (patientID)

26. GENERAL_PHYSICIANS (generalphysicianID, istrainee, certification, certexpdate, type)
FOREIGN KEY generalphysicianID REFERENCES DOCTORS (doctorID)
Check Constraint (isTrainee='YES' OR isTrainee='NO')

27. INSURANCE_COMPANIES (inscompanyID, inscompanyname, inscomlicenseno, address,

email, phoneno)
Check Constraint (phoneno not like '%[^0-9]%')

28. LABTESTS_DONEBY (labID, labtestID)

FORIEGN KEY labID REFERENCES LABS (labID)
FORIEGN KEY labtestID REFERENCES LAB_TESTS (labtestID)

29. LAB_TESTS (testID, testname,fees$)

30. LABS (labID, labname, phonenumber, zip, street, buildingno)

Check Constraint (phoneno not like '%[^0-9]%')

31. MEDICALREPORTS (reportID, repDate, reportName, patientID, actualLabTestID)
FORIEGN KEY patientID REFERENCES PATIENTS (patientID)
FORIEGN KEY actualLabTestID REFERENCES ACTUAL_LAB_TESTS
(actualLabTestID)

32. MEDICINE_DRUGS (medicineID, drugs)

FOREIGN KEY medicineID REFERENCES MEDICINES (medicineID)

33. MEDICINES (medicineID, productname, brand, expirydate, type, count)

34. NURSES (nurseID, nursinglicenseno, type, hourlybillingrate)
FOREIGN KEY nurseID REFERENCES EMPLOYEES (employeeID)

35. PATHOLOGISTS (pathologistID, certification, labID)

FOREIGN KEY pathologistID REFERENCES EMPLOYEES (employeeID)
FOREIGN KEY labID REFERENCES LABS (labID)

36. PATIENTS (patientID, username, password, studentID)

FOREIGN KEY studentID REFERENCES STUDENTS (studentID)

37. PATIENTS_PRESCRIPTIONS (patientID, prescriptionID)
FOREIGN KEY patientID REFERENCES PATIENTS (patientID)
FOREIGN KEY prescriptionID REFERENCES PRESCRIPTIONS (prescriptionID)

38. PHAR_DELASSOC (delassociateID, pharmacyID)

FOREIGN KEY delassociateID REFERENCES DELIVERY_ASSOCIATES
(delassociateID)

39. PHAR_PROMO (pharmacyID, promotionID)

FOREIGN KEY pharmacyID REFERENCES PHARMACIES (pharmacyID)
FOREIGN KEY promotionID REFERENCES PROMOTIONS (promotionID)

 22

40. PHARM_MEDICINES (medicineID, pharmacyID)

FOREIGN KEY medicineID REFERENCES MEDICINES (medicineID)
FOREIGN KEY pharmacyID REFERENCES PROMOTIONS (pharmacyID)

41. PHARM_PHARMACIST (pharmacistID, pharmacyID)

FOREIGN KEY pharmacyID REFERENCES PHARMACIES (pharmacyID)
FOREIGN KEY pharmacistID REFERENCES PHARMACISTS (pharmacistID)

42. PHARMACIES (pharmacyID, pharmacyName, zip, buildingno, street, phoneno, email)

Check constraint on Phone Number, only numbers allowed

43. PHARMACISTS (pharmacistID, pharmacistlicenseno)
FOREIGN KEY pharmacistID REFERENCES EMPLOYEES (employeeID)

44. PRESCRIPTIONS (prescriptionID, prescriptiondate, pharmacistID, caseID, doctorID,

pharmacyID)
FOREIGN KEY pharmacistID REFERENCES PHARMACISTS (pharmacistID)
FOREIGN KEY caseID REFERENCES CASE_DETAILS (caseID)
FOREIGN KEY doctorID REFERENCES DOCTORS (employeeID)
FOREIGN KEY pharmacyID REFERENCES PHARMACIES (pharmacyID)

45. PRESCRIPTIONS_LABTESTS (testID, prescriptionID)

FOREIGN KEY prescriptionID REFERENCES PRESCRIPTIONS (prescriptionID)
FOREIGN KEY testID REFERENCES LAB_TESTS (testID)

46. PROMOTIONS (promotionID, discount, startdate, enddate)

47. RATINGS (ratingID, description)

48. SPECIALISTS (specialistID, specializationID, ispermanent)

FOREIGN KEY specialistID REFERENCES DOCTORS (doctorID)
Check Constraint (ISPERMANENT='1' OR ISPERMANENT='0')

49. SPECIALIZATIONS (specializationID, specializationName, description)

FOREIGN KEY specializationID REFERENCES SPECIALIZATIONS
(specializationID)

50. STUDENTS (studentID, firstname, lastname, bloodgroup, emailaddress, phonenumber, zip,

street, buildingno, gender, inscompanyID, dateofbirth, age, city, state)
FOREIGN KEY companyID REFERENCES INSURANCE_COMPANIES
(companyID)
Check Constraint (phoneno not like '%[^0-9]%')

51. SYMPTOMS (symptomID, name, type)

52. TRIP_DETAILS (tripID, timeoftrip, street, zip, buildingno, crewID, ambulanceID)

FOREIGN KEY crewID REFERENCES CREW (crewID)
FOREIGN KEY ambulanceID REFERENCES AMBULANCES (ambulanceID)

 23

Chapter 4: Queries

Complex Queries
Query 1 – Diagnosis Appropriateness

Calculate the appropriateness of the diagnosis doctor gives the patient.
For a Year and Month Combination (For Example: 2019-Decemeber) for a patient, show the
patient ID, symptom type, symptom name and number of cases patient has registered during
the given month and year and the Medicine-Drug combination that was prescribed for that
patient.
Based on the No of cases registered for a given patient, symptom, medicine-drug combination,
If the No of cases is equal to 2, the Diagnosis Appropriateness is “Rarely Appropriate”, If the
No of cases are greater than or equal to 3, the Diagnosis Appropriateness is “Not Appropriate”,
else it is “Appropriate”.

WITH s AS
(SELECT * FROM (SELECT p.patientid pid, CONCAT(CONCAT(s.firstname,' '),s.lastname)
pname,s.type stype,s.name sname, COUNT(c.caseid) noofcase,
EXTRACT (year from c.datetime) yd, to_char(c.datetime,'Month') md,
CONCAT(CONCAT(m.productname,'-'),md.drugs) medicine
FROM case_details c
 JOIN patients p ON p.patientid = c.patientid
 JOIN case_symptoms cs ON cs.caseid = c.caseid
 JOIN symptoms s ON s.symptomid = cs.symptomid
 JOIN prescriptions pr ON c.caseid = pr.caseid
 JOIN drug_details dd ON dd.prescriptiionid = pr.prescriptionid
 JOIN medicines m ON m.medicineid = dd.medicineid
 JOIN medicine_drugs md ON md.medicineid = m.medicineid
 JOIN students s ON s.studentid = p.studentid
WHERE (SELECT sysdate FROM dual) - (TO_DATE(to_char(c.datetime,'dd-MON-yyyy')))
<=365
AND s.type NOT IN ('Psychiatric')
GROUP BY p.patientid,s.name,s.type, extract(year from c.datetime),
to_char(c.datetime,'Month'), m.productname, md.drugs, s.firstname, s.lastname
ORDER BY p.patientid))
SELECT CONCAT (CONCAT (yd,'-'), md) as "Year and Month",pid AS "Patient ID",
pname AS "Patient Name", stype AS "Symptom Type",sname AS "Symptom Name",
noofcase AS "No of Cases",medicine AS "Medicine-Drug",
(CASE WHEN noofcase = 2 THEN 'Rarely Appropriate'
WHEN noofcase >= 3 THEN 'Not Appropriate'
ELSE 'Appropriate'
END) AS "Diagnosis Appropriateness"
FROM s;

 24

Output:

Figure 1: Diagnosis Appropriateness Output

Query 2 – Case Count Analysis

Display for the past 24 months the data about No of cases doctors have addressed in “current”
month, number of cases from a month ago, number of cases in the same month a year, annual
change in No of Cases and monthly change in No of cases.

-The “current” year and month (e.g., 2019-October 2019-September, etc.)
-The number of cases in that month
-The number of cases from a month ago (e.g., if we’re in November 2019, we should get
October 2019 case data). If we have no data for a month ago, show: Not Available
-The number of cases in the same month a year ago (e.g., if we’re in December 2019, we should
get December 2018 checkouts). If we have no data, show: N/A
-The number of cases in the following month
-The annual change in No of Cases, i.e., this month’s No of cases – checkouts from a year ago,
assuming data is available. If there is no data, show Not Available.
-The monthly change in No of cases (i.e., this month’s No of cases – No of cases from a month
ago) If there is no data or if there are null values, display ‘Not available’

b) Sort the results by month so the latest month is on top

WITH mind as (

SELECT add_months(sysdate, -24) as mindate
FROMdual

),
listmonths (lmonth) as (

 SELECT mindate as lmonth
 FROM mind
 UNION ALL
 SELECT add_months(lmonth,1)
 FROM listmonths
 WHERE add_months(lmonth,1) <= sysdate+1

 25

),
monyear as (

 SELECT extract (year from lmonth) as lyear, extract (month from lmonth) as lmonth
 FROM listmonths

),
borr as (

 SELECT c.caseid as Cases,extract(year from (cast(c.datetime as date))) as iyear,
extract(month from (cast(c.datetime as date))) as imonth
 FROM case_details c
 JOIN doctors d ON c.doctorid = d.doctorid

),
monborr as (

 SELECT iyear, imonth, count (*) as NoofCases
 FROM borr
 GROUP BY iyear, imonth

),
rawstats as (

 SELECT lyear, lmonth, coalesce (NoofCases,0) ctissue
 FROM monyear my
 LEFT OUTER JOIN monborr mb on my.lyear = mb.iyear and my.lmonth =
mb.imonth

),
monstats as (

 SELECT lyear, lmonth, ctissue,
 LEAD (ctissue,1) OVER (ORDER by lyear,lmonth) AS nmc,
 LAG (ctissue,1) OVER (ORDER by lyear,lmonth) AS lmc,
 LAG (ctissue,12) OVER (ORDER by lyear,lmonth) AS lyc
 FROM rawstats

)
SELECT lyear ||'-'|| to_char(to_date(lmonth,'MM'),'Month') as "Year and Month",
ctissue AS "No of Cases",
 coalesce(to_char(lyc),'Not available') as "No of Cases Last Year",
 coalesce(to_char(lmc),'Not available') as "No of Cases Last Month",
 coalesce(to_char(nmc),'Not available') as "No of Cases Next Month",
 coalesce(to_char(ctissue-lyc),'N/A') as "Annual change",
 coalesce(to_char(ctissue-lmc),'N/A') as "Monthly change"
FROM monstats
ORDER BY lyear desc, lmonth desc
FETCH FIRST 24 rows only;

 26

Output:

Figure 2: Case Count Analysis Output

Query 3 - Seasonal Symptom and Drug Pattern

A) For a given Symptom and Symptom type, calculate the number of cases registered, and the
medicine and drugs prescribed for the respective symptom type. Based on the number of cases
during a given month,
If the cases registered are in the month of March - May, then display Season as “Spring”,
If the cases registered are in the month of Jun – Aug, then display Season as “Summer”,
If the cases registered are in the month of Sep– Nov, then display Season as “Autumn”,
Else display the season as “Winter”
B) Display number of cases to >=2

WITH casenum AS
(SELECT * FROM (SELECT s.name sname, s.type stype, count(c.caseid) NoofCases,
extract (month from c.datetime) monthvalue, m.medicineid medicineid,m.productname
medicines, md.drugs drugnames
FROM symptoms s
 JOIN case_symptoms cs ON cs.symptomid = s.symptomid
 JOIN case_details c ON c.caseid = cs.caseid
 JOIN prescriptions p ON c.caseid = p.caseid
 JOIN drug_details dd ON p.prescriptionid = dd.prescriptiionid
 JOIN medicines m ON m.medicineid = dd.medicineid
 JOIN medicine_drugs md ON m.medicineid = md.medicineid
WHERE s.type NOT IN ('Psychiatric')
GROUP BY s.name, s.type, extract(month from c.datetime), m.productname, m.medicineid,
md.drugs)),

 27

lagg AS (select * from (select distinct(md.medicineid) medid, listagg(drugs, '; ') within group
(order by drugs) over (partition by md.medicineid) as tlist
FROM medicine_drugs md))

SELECT d.sname as "Symptom Name", d.stype as "Symptom Type", d.NoofCases as "No of
Cases", d.medicines as "Medicine", l.tlist as "Drugs list",
(CASE
 WHEN d.monthvalue IN (3,4,5) THEN 'Spring'
 WHEN d.monthvalue IN (6,7,8) THEN 'Summer'
 WHEN d.monthvalue IN (9,10,11) THEN 'Autumn'
 ELSE 'Winter'
END) as "Season"
FROM lagg l

JOIN casenum d ON l.medid = d.medicineid
WHERE d.NoofCases >= 2;

Output:

Figure 3: Seasonal Symptom and Drug Pattern Output

Query 4 - Best performing employees in each employee category

The employees receive a rating at the end of each quarter. The administrator wants to know the
best performing employees working at the hospital for each quarter.
Write a query to rank the employees based on their employee ratings.
The administrator is concerned with rankings for the latest quarter only.
They employees are ranked based on their employee type - i.e doctors, nurses etc.
Display all the employees in each group who have received a rank of 1.

WITH latest_date AS (
 SELECT err.employeeid, max(er.ratingdate) as maxdate
 FROM employee_ratings er JOIN employee_ratings_received err
 ON er.employeeratingid = err.employeeratingid
 GROUP BY err.employeeid
),
rankingByGroup AS (
SELECT e.employeeid, e.firstname, e.lastname, er.ratingid, e.type,
DENSE_RANK () OVER (PARTITION BY e.type

 28

ORDER BY er.ratingid desc) as DenseRank
FROM employee_ratings_received err
 JOIN employee_ratings er ON er.employeeratingid = err.employeeratingid
 JOIN employees e ON e.employeeid = err.employeeid
 JOIN latest_date ON latest_date.employeeid = e.employeeid
 WHERE er.ratingdate = latest_date.maxdate
)
SELECT *
FROM rankingByGroup
WHERE DenseRank = 1;

Output:

Figure 4: Best performing employees’ output

Query 5 – Diagnosis Insured

For Every Patient Insured who has a case registered, display the Insurance Company ID,
Diagnosis for which a patient has been claimed insurance,
No of cases registered for that particular diagnosis and the total bill amount

WITH t AS
 (SELECT * FROM (SELECT icdcode, b.inscompanyid icompanyid, sum (
coalesce(b.total_cost,0) + coalesce(b.additionalcharges,0)) billamount,count(icdcode)
nooficdcode from billing_details b
 JOIN diagnosis_details dd on dd.caseid = b.caseid
 JOIN insurance_companies ic on ic.inscompanyid = b.inscompanyid
 GROUP BY icdcode,b.inscompanyid
))
SELECT t.icompanyid "Insurance Company ID",d.description as "Diagnosis",t.nooficdcode
"No of Cases Diagnosed",t.billamount "Total Bill Amount"
FROM t
JOIN diagnoses d on d.icdcode = t.icdcode
ORDER BY t.icompanyid,t.nooficdcode;

 29

Output:

Figure 5: Diagnosis Insured Output

Query 6 – Patient Historical Statistics

Displaying the history of patient's history with the On-the-go services. This includes the total
number of cases they have had, Sum of all the bills paid, No of appointments booked through
the app and the total no of times an ambulance was sent for the patient. This lists out only those
patients who have had at least 1 interaction with the application, i.e. at least 1 case or 1
appointment or 1 instance when an ambulance was sent.
Patient Name is an aggregate of their first, last and middle name.
Total no of cases is a count of number of cases for that patient
Total Bill Amount is a sum of all the bills generated for that customer
No of Appointments booked is a count of all the appointments booked by that patient through
the application
No of Times ambulance sent is a count of the total no of times an ambulance is sent for a patient

WITH Student_Name AS
(

SELECT unique(p.patientID) "Patient ID",
s.Firstname || ' ' || s.middleinitial || ' ' || s.lastname as "Patient Name"
FROM students S
JOIN patients p on p.studentid = s.studentid
LEFT OUTER JOIN case_details cd on p.patientid = cd.patientid

),

Case_count AS
(

SELECT sum(bd.total_cost) "Total Cost", count(bd.caseid) "No of Cases", cd.patientid
"Patid"
FROM billing_details bd

 30

LEFT OUTER JOIN case_details cd on cd.caseid = bd.caseid
GROUP BY cd.patientid

),

App_count AS
(

SELECT count(appointmentid) "Appointment Count",
patientid
FROM appointments
GROUP BY patientid

),

Amb_req AS
(

SELECT count(td.caseid) "Ambulance Count", cd.patientid "Patid"
FROM trip_details td
JOIN case_details cd on cd.caseid = td.caseid
GROUP BY cd.patientid

)

SELECT "Patient ID", "Patient Name", Coalesce ("No of Cases",0) "Total No of Cases",
Coalesce ("Total Cost",0) "Total Bill Amount",
Coalesce ("Appointment Count",0) "No of Appointments Booked",
Coalesce ("Ambulance Count",0) "No of Times Ambulance Sent"
from student_name

LEFT OUTER JOIN Case_count ON student_name."Patient ID" = Case_count."Patid"
LEFT OUTER JOIN App_count ON student_name."Patient ID" =
App_count.patientid
LEFT OUTER JOIN Amb_req ON student_name."Patient ID" = Amb_req."Patid"

WHERE Coalesce ("No of Cases",0) <> 0 or Coalesce ("Appointment Count",0) <> 0 or
Coalesce ("Ambulance Count",0) <> 0
ORDER BY "Patient ID";

Output:

 31

Figure 6: Patient Historical Statistics Output

Query 7 – Student Subsidy Eligibility

Campus health provides lab test fee waivers to students who have spent more than $250 on the
same lab test.

SELECT mr.patientid, lt.testname, count(*) as "TIMES TEST DONE",
to_char(sum(lt.fees), '$99,999.99') as "TOTAL FEE"
FROM medicalreports mr
 JOIN actual_lab_tests alt ON alt.actuallabtestid = mr.actuallabtestid
 JOIN lab_tests lt ON lt.testID = alt.labtestid
GROUP BY mr.patientid, lt.testid, lt.testname
HAVING SUM(lt.fees) > 250
ORDER BY "TOTAL FEE" DESC
FETCH FIRST 5 ROWS ONLY;

Output:

Figure 7: Student Subsidy Eligibility Output

Query 8 – Available Time Slots for Appointments

For a given doctor and an appointment date, fetch available time slots to book an appointment

 32

WITH s AS
(SELECT * FROM (SELECT starttime, endtime FROM appointment_slots_new))

SELECT to_char(cast(s.starttime as date),'hh12:mi:ss') as timeslotstarttime,
to_char(cast(s.endtime as date),'hh12:mi:ss') as timeslotendtime , to_char(cast(a.appdate as
date),'DD-MON-YY') ,a.doctorid
FROM s
 LEFT OUTER join appointments_new a on to_char(cast(a.starttime as date),'hh12:mi:ss') =
to_char(cast(s.starttime as date),'hh12:mi:ss')
WHERE (a.doctorid = 11
AND to_char(cast(a.appdate as date),'DD-MON-YY') != '12-DEC-19')
OR (a.starttime is null AND a.endtime is null)
ORDER BY s.starttime,s.endtime;

Note: This query is used in the backend hence, Parameters for doctor id and appdate are
inputted in our code. For testing purposes, doctor id = 11 and appdate = ‘12-Nov-19'

Output:

Figure 8: Appointments Output

Query 9 – Crew Classification

Classify the crews based on number of ambulance trips they have been a part of.
Display Crew Name, Year and Month of the trip, Number of trips and Crew Type.
If the number of trips is >= 4 display Crew Type as "Gold Crew",
If the number of trips is >= 2 display Crew Type as "Silver Crew",
Else the Crew Type is "Bronze Crew".

WITH t AS
(SELECT * FROM (SELECT cr.crewid cid, cr.crewname cname, extract (year from
(to_date(to_char(td.timeoftrip,'dd-MON-yyyy')))) as Yearv,

 33

to_char((to_date(to_char(td.timeoftrip,'dd-MON-yyyy'))),'Month') as monthv,
count(td.tripid) as Nooftrips
FROM trip_details td
 JOIN crews cr ON cr.crewid = td.crewid
 JOIN case_details cd ON cd.caseid = td.caseid
group by cr.crewid, cr.crewname,(extract (year from (to_date(to_char(td.timeoftrip,'dd-MON-
yyyy'))))),
to_char((to_date(to_char(td.timeoftrip,'dd-MON-yyyy'))),'Month')))

SELECT cname "Crew Name",concat(concat(yearv,'-'),monthv) "Year and Month" ,Nooftrips
AS "No of Trips",
 (CASE
 WHEN Nooftrips >= 4 THEN 'Gold Crew'
 WHEN Nooftrips >=2 and Nooftrips <=3 THEN 'Silver Crew'
 ELSE 'Bronze Crew'
 END) AS "Crew Type"
FROM t
ORDER BY cid;

Output:

Figure 9: Crew Classifications Output

Query 10 – Patient Case History

When patient logs in, he can see his case history. This would allow him to go through his
previous cases. This includes the caseid, case details, the doctor who attended the case and the
medicines or tests prescribed by the doctor.

SELECT cd.caseid, cd.status, cd.datetime, severity, (e.firstname || ' ' ||e.lastname) as "Doctor
Name", p.prescriptionid,
ph.zip as "Pharmacy Zip", cs.symptomid, s.name, s.type, di.description, notes, comments,
td.street,td.buildingno, m.productname,lt.testname
FROM case_details cd
 LEFT OUTER JOIN employees e on e.employeeid = cd.doctorid
 LEFT OUTER JOIN prescriptions p on cd.caseid = p.caseid
 LEFT OUTER JOIN pharmacies ph on p.pharmacyid = ph.pharmacyid
 LEFT OUTER JOIN case_symptoms cs on cd.caseid = cs.caseid
 LEFT OUTER JOIN symptoms s on cs.symptomid = s.symptomid
 LEFT OUTER JOIN diagnosis_details dd on cd.caseid = dd.caseid

 34

 LEFT OUTER JOIN diagnoses di on dd.icdcode = di.icdcode
 LEFT OUTER JOIN trip_details td on cd.caseid = td.caseid
 LEFT OUTER JOIN drug_details drd on p.prescriptionid = drd.prescriptiionid
 LEFT OUTER JOIN medicines m on drd.medicineid = m.medicineid
 LEFT OUTER JOIN prescriptions_labtests pl on p.prescriptionid= pl.prescriptionid
 LEFT OUTER JOIN lab_tests lt on pl.testid = lt.testid
WHERE cd.patientid = '1004'
ORDER BY cd.caseid;

Output:

Figure 10: Patient Case History Output

Query 11 – Time and Trip Analysis based on a Symptom

In a year and for a given symptom, calculate the no of cases registered, total duration of the
cases, average duration of the
cases and the total number of times ambulance has been sent for that symptom registered in a
case

SELECT extract (year from (to_date(to_char(cd.datetime,'dd-MON-yyyy')))) as "Year",
s.name as "Symptom Name",
count(cd.caseid) as "No of Cases", sum(cd.duration_min) as "Total Duration",
to_char(Avg(cd.duration_min),'999.99') as "Average Duration", count(tripid) as "No of Trips"
FROM symptoms s
 JOIN case_symptoms cs ON s.symptomid = cs.symptomid
 JOIN case_details cd ON cd.caseid = cs.caseid
 LEFT OUTER JOIN trip_details td ON td.caseid = cd.caseid
GROUP BY s.name,extract (year from (to_date(to_char(cd.datetime,'dd-MON-yyyy'))))
ORDER BY extract (year from (to_date(to_char(cd.datetime,'dd-MON-yyyy'))))

Output:

 35

Figure 11: Time and Trip Analysis Output

Query 12 – Pharmacy Medicine Availability

For the ICD Codes diagnosed for a particular case, display the medicine prescribed and
availability in the pharmacies

WITH x AS (
SELECT p.caseid cid, di.icdcode as "ICD CODE",dd.medicineid as medid,p.pharmacyid as
pid, ph.pharmacyname as "Pharmacy Name"
FROM drug_details dd
 JOIN prescriptions p ON dd.prescriptiionid = p.prescriptionid
 JOIN pharmacies ph ON ph.pharmacyid = p.pharmacyid
 JOIN diagnosis_details di ON di.caseid = p.caseid
)
SELECT distinct ("ICD CODE") as "ICD Code Diagnosed", medid as "Medicine Name",
Listagg (p.pharmacyname, '; ') within group (order by p.pharmacyname) over (partition by
x.medid) as "Pharmacy List"
FROM pharmacies p
 JOIN x ON x.pid = p.pharmacyid
GROUP BY "ICD CODE", medid, p.pharmacyname, x.medid
ORDER BY medid;

 36

Output:

Figure 12: Pharmacy Medicine Availability Output

 37

Chapter 5: Triggers and Procedures

Below are the triggers and procedures which we have used to complete our project
requirements. Along with triggers and procedures, we have used encrypt and decrypt
functions which encrypts patient credentials.

Triggers
Trigger 1 - trig_trip_details

CREATE OR REPLACE TRIGGER trig_trip_details
AFTER INSERT OR UPDATE ON case_details
FOR EACH ROW

DECLARE
check_severity case_details.severity%type;
new_trip_id trip_details.tripid%type;
patient_street students.street%type;
patient_building students.buildingno%type;
patient_zip students.zip%type;
current_crew crews.crewid%type;
current_ambulance ambulances.ambulanceid%type;
trip_time trip_details.timeoftrip%type;

BEGIN

check_severity:=:new.severity;

new_trip_id:= trip_id_seq.nextval;
trip_time :=sysdate;

select buildingno, s.street,zip into patient_building, patient_street, patient_zip
from students s
where rownum=1;

select crewid into current_crew
from
(SELECT crewid FROM crews
ORDER BY dbms_random.value)
WHERE rownum = 1;

select ambulanceid into current_ambulance
from
(SELECT ambulanceid FROM ambulances
where upper(availability)= 'TRUE'
ORDER BY dbms_random.value)
WHERE rownum=1;

 38

if(upper(check_severity) = 'HIGH')
then
insert into trip_details (tripid,timeoftrip, buildingno, street, zip,crewid,ambulanceid, caseid)
values (new_trip_id,trip_time,
patient_building,patient_street,patient_zip,current_crew,current_ambulance, :new.caseid);
end if;

END;

/*
Trigger trig_trip_details first checks the severity of the case. This is dependent on "severity"
attribute of case.
If the severity is “High” then we trigger an ambulance. Here one record for trip details of
ambulance will be inserted.
For a trip the crew and the ambulance is randomly chosen. The trip is recorded for the
patients address which is Available from student database. The trip id will be automatically
generated using sequence.
*/

Trigger 2 - generate_bill

create or replace TRIGGER BITSPLEASE.GENERATE_BILL
AFTER INSERT
ON diagnosis_details
FOR EACH ROW

DECLARE
diag_status diagnosis_details.diagnosis_complete%TYPE;
case_status case_details.status%TYPE;
current_case_id billing_details.caseid%TYPE;
current_ins_company billing_details.inscompanyid%TYPE;
new_bill_id billing_details.billid%TYPE;

BEGIN

diag_status := :new.diagnosis_complete;

SELECT inscompanyid INTO current_ins_company
FROM students s
JOIN patients p ON p.studentid = s.studentid
JOIN case_details cd ON p.patientid = cd.patientid
WHERE cd.caseid = :new.caseid;

new_bill_id := bill_id_seq1.nextval;

IF(UPPER(diag_status) = 'YES') THEN
 case_status:= 'close';

 39

 INSERT INTO billing_details VALUES (new_bill_id,5,0,sysdate,
'Paid',current_ins_company, :new.caseid);
 UPDATE case_details SET status = case_status WHERE caseid= :new.caseid;
ELSIF(UPPER(diag_status) = 'NO') THEN
 case_status:= 'open';
 INSERT INTO billing_details VALUES (new_bill_id,5,0,sysdate,
'Paid',current_ins_company, :new.caseid);
 UPDATE case_details SET status = case_status WHERE caseid= :new.caseid;
END IF;

END;

/*
Trigger GENERATE_BILL is used to generate a bill for specific case. The bill is generated
as soon as the diagnosis is complete. There is fixed $5 consultation fees which is taken for
each case. There can be additional charges. sysdate is chosen to date the bill at the time of
insert. We add insurance company in billing details to send the bill to the insurance company
with which the student is registered. For that we join the insurance companies and student
tables. This trigger also marks the case as closed as soon as the diagnosis is complete. The
attribute "diagnosis_complete" in diagnosis details table is used check if the diagnosis is
complete or not. Bill is generated for both the cases, whether the diagnosis is complete or not.
The bill id is generated automatically using sequence.
*/

Trigger 3 - chat_details_doc

create or replace trigger chat_details_doc
before insert
on chat_details
for each row

declare
new_symptom chat_details.initial_symptoms%type;
new_doc chat_details.docid%type;
sym_type symptoms.type%type;

begin

:new.chatid := chat_details_id.nextval;

select type into sym_type
from symptoms
where symptomid = :new.initial_symptoms;

dbms_output.put_line(sym_type);
if(upper(sym_type)= 'GENERAL') then

select generalphysicianid into new_doc
from
(SELECT generalphysicianid FROM general_physicians

 40

ORDER BY dbms_random.value)
WHERE rownum = 1;

else
select specialistid into new_doc
from specializations s
join specialists sp
on sp.specializationid = s.specializationid
where upper(specializationname) = upper(sym_type);

end if;

:new.docid := new_doc;

end;

/*
The trigger chat_details_doc is used to assign doctor to the patient according to the symptoms
that the patient gives.
The symptoms tables has types which is matched with the specialisation which a specialist
has. If the symptoms are "General", then a general physician is randomly assigned to the
patient. The if condition checks the symptoms type and assigns the doctor accordingly. The
doctor id is updated on the chat_details table. We also update the chatid using sequence
chat_details_id.
*/

Trigger 4 - age_calculation_emp

CREATE OR REPLACE TRIGGER age_calculation_emp
BEFORE INSERT OR UPDATE
ON EMPLOYEES
FOR EACH ROW
DECLARE
 agecalc EMPLOYEES.AGE%type;
 dateofbirth EMPLOYEES.DATEOFBIRTH%type;
 empid EMPLOYEES.EMPLOYEEID%type;
 eid EMPLOYEES.EMPLOYEEID%type;

BEGIN
with s as (select :new.dateofbirth dateofbirth, :new.employeeid empid from dual)
 select round(((select sysdate from dual) - s.dateofbirth)/365),s.empid into agecalc, eid
from s
 where s.empid = :new.employeeid;
 :new.age := agecalc;
END;

/*
Trigger age_calculation_emp is used to calculate derived attribute age of the employee. Age
is calculated using

 41

the date of birth of the employee. We subtract the date of birth from the current date to obtain
recent age
*/

Trigger 5 - age_calculation_student

CREATE OR REPLACE TRIGGER age_calculation_student
BEFORE INSERT OR UPDATE
ON STUDENTS
FOR EACH ROW
DECLARE
 agecalc STUDENTS.AGE%type;
 dateofbirth STUDENTS.DATEOFBIRTH%type;
 studid students.studentid%type;
 sid students.studentid%type;

BEGIN
with s as (select :new.dateofbirth dateofbirth, :new.studentid studid from dual)
 select round(((select sysdate from dual) - s.dateofbirth)/365),s.studid into agecalc, sid
from s
 where s.studid = :new.studentid;
 :new.age := agecalc;
END;

/*
Trigger age_calculation_student is used to calculate the age of the student. We subtract date
of birth of the
student from current date to calculate the current age.
*/

Trigger 6 - appointmentendtime_slot

CREATE OR REPLACE TRIGGER appointmentendtime_slot
BEFORE INSERT OR UPDATE
ON appointments
FOR EACH ROW

DECLARE
appid appointments.appointmentid%type;
current_end_time appointments.endtime%type;
current_start_time appointments.starttime%type;

BEGIN

with s as (select :new.starttime current_start_time, :new.appointmentid appid from dual)
select s.current_start_time into current_end_time
from s
where s.appid = :new.appointmentid;

 42

:new.endtime := current_end_time + interval '30' minute ;

END;

/*
Trigger appointmentendtime_slot is used to calculate the end time of the appointment slot. A
slot is typically of 30 minutes. Hence end time of a slot would be calculated by adding 30
mins to the start time. As our data type is interval, the code interval '30' minute
would add 30 minutes to the start time.
*/

Trigger 7 - actuallabtestid_trigger

CREATE OR REPLACE TRIGGER actuallabtestid_trigger
BEFORE INSERT
ON actual_lab_tests
FOR EACH ROW
--DECLARE
-- temp_actuallabtestid actual_lab_tests.actuallabtestid%type;
BEGIN
-- SELECT actuallabtestid_seq.nextval INTO temp_actuallabtestid FROM dual;
 :new.actuallabtestid := actuallabtestid_seq.nextval;
END;

/*
The trigger populates the actuallabtestid using sequence actuallabtestid_seq
*/

Trigger 8 - appointment_id_trig

CREATE OR REPLACE TRIGGER appointment_id_trig
BEFORE INSERT OR UPDATE
ON appointments
FOR EACH ROW

DECLARE

BEGIN
DBMS_OUTPUT.ENABLE;
:new.appointmentid := appointment_id_seq.nextval;

END;

/*
Trigger appointment_id_trig updates the appointmentid for appointments using sequence
appointment_id_seq
*/

Trigger 9 - case_new_id

 43

CREATE OR REPLACE TRIGGER case_new_id
BEFORE INSERT
ON CASE_DETAILS
FOR EACH ROW
BEGIN
 :new.caseid := case_id_seq.nextval;
END;

/*
Trigger case_new_id is used to update caseid using sequence case_id_seq
*/

Trigger 10 - feedback_id_trig

CREATE OR REPLACE TRIGGER feedback_id_trig
BEFORE INSERT
ON feedbacks
FOR EACH ROW

DECLARE

BEGIN
DBMS_OUTPUT.ENABLE;
:new.feedbackid := feedback_id_seq.nextval;

END;

/*
Trigger feedback_id_trig is used to update feedbackid using sequence feedback_id_seq
*/

Trigger 11 - lab_id_trig

CREATE OR REPLACE TRIGGER lab_id_trig
BEFORE INSERT
ON labs
FOR EACH ROW

DECLARE

BEGIN

DBMS_OUTPUT.ENABLE;
:new.labid := lab_id_seq.nextval;

END;

/*
Trigger lab_id_trig is used to update labid using sequence lab_id_seq

 44

*/

Trigger 12 - medicine_id_trig

CREATE OR REPLACE TRIGGER medicine_id_trig
BEFORE INSERT
ON medicines
FOR EACH ROW

DECLARE

BEGIN
DBMS_OUTPUT.ENABLE;
:new.medicineid := medicine_id_seq.nextval;

END;

/*
Trigger medicine_id_trig is used to update medicineid using sequence medicine_id_seq
*/

Trigger 13 - patient_trigger

CREATE OR REPLACE TRIGGER patient_trigger
BEFORE INSERT
ON PATIENTS
FOR EACH ROW

BEGIN
:new.PATIENTID := patient_seq.nextval;

END;

/*
Trigger patient_trigger is used to update patientid using sequence patient_seq
*/

Trigger 14 - pharmacy_id_trig

CREATE OR REPLACE pharmacy_id_trig
BEFORE INSERT
ON pharmacies
FOR EACH ROW

DECLARE

BEGIN
DBMS_OUTPUT.ENABLE;

 45

:new.pharmacyid := pharmacy_id_seq.nextval;

END;

/*
Trigger pharmacy_id_trig is used to update patientid using sequence pharmacy_id_seq
*/

Trigger 15 - prescription_trigger

CREATE OR REPLACE TRIGGER prescription_trigger
BEFORE INSERT
ON Prescriptions
FOR EACH ROW

BEGIN
:new.prescriptionID := prescription_seq.nextval;
END;

/*
Trigger prescription_trigger is used to update prescriptionID using sequence prescription_seq
*/

Procedures
Procedure 1 - EMPLOYEE_LOYALTYPOINTS

CREATE OR REPLACE PROCEDURE EMPLOYEE_LOYALTYPOINTS
AS CURSOR Cursor1 IS
select err.employeeID employeeid,count(err.employeeratingid) employeeratingno,
sum(er.ratingID) ratingsum from employee_ratings_received err
join employee_ratings er on er.employeeratingid = err.employeeratingid
where ((select sysdate from dual) - er.ratingdate) <= 365
group by err.employeeID
order by err.employeeID;

points employees.loyaltypoints%type;

BEGIN
FOR emprating IN Cursor1 LOOP

points := 0;
IF (emprating.employeeratingno > 0)
THEN points := points + emprating.ratingsum;
END IF;

IF (emprating.employeeratingno = 4 and emprating.ratingsum = 20)
THEN points := points + 10;
END IF;

 46

UPDATE Employees set loyaltypoints = points where employeeid = emprating.employeeid;
END LOOP;

END;

/*
Procedure EMPLOYEE_LOYALTYPOINTS is used to calculate loyalty points of the
employees. The loyalty points are updated
for each quarter on the basis of employee ratings.
*/

Procedure 2 - password_check

create or replace procedure password_check(sid patients.studentid%type , usernm
patients.username%type , oldpassword patients.password%type) as
var_sid number(3):= null;
begin

select studentid
into var_sid
from patients
where studentid=sid
and username=usernm
and password = (select encrypt(oldpassword,'keytestvalue') from dual);

exception
when NO_DATA_FOUND then
raise_application_error(-20001, 'Invalid Credentials');

end;

/*
The procedure password_check checks if the credentials of student are valid. This procedure
takes student id, username and password as input and compares the password from the
database. if the same credentials are not found for that studentid then we raise an application
error*/

Procedure 3 - signup_proc2

create or replace procedure signup_proc2 (uname VARCHAR2,stuid number) as
cursor ctest is
select username,studentid
from patients;

check_username patients.username%type;
check_stdid patients.studentid%type;
test_stdid students.studentid%type;
flag VARCHAR2(2);

BEGIN

 47

select count(*) into test_stdid
from students
where studentid = stuid;

if (test_stdid > 0) then

 open ctest;
 loop
 FETCH ctest into check_username, check_stdid;
 EXIT WHEN ctest%NOTFOUND;

 if(uname = check_username) then
 raise_application_error
 (-20090, 'Username already exists');
 elsif(stuid = check_stdid) then
 raise_application_error
 (-20091, 'Student ID already exists');
 end if;

 end loop;
 close ctest;

else
raise_application_error(-20092, 'Invalid StudentID');

end if;

end;

/*
The procedure signup_proc2 is used to check valid student when he/she signs up as patient. It
also ensures that username used by a patient during signup is unique. The if condition checks
if the patient is registered as a student. If no data is found of that student then we raise an
application error. If the student exists in the database, then we check if the username entered
is unique or not. If the username is duplicate, we raise an application error.
*/

Functions

Reference: https://jameshuangsj.wordpress.com/2019/05/09/data-encryption-and-decryption-
in-oracle/

Encrypt

CREATE OR REPLACE FUNCTION encrypt (p_text IN VARCHAR2, p_key
VARCHAR2)

 48

 RETURN RAW
 IS
 lc_text VARCHAR2(32767) := p_text;
 lr_key RAW(255) := UTL_RAW.cast_to_raw(p_key);
 lt_enc_text RAW(32767);
BEGIN
lc_text := RPAD(lc_text, (TRUNC(LENGTH(lc_text)/8)+1)*8, CHR(0));
DBMS_OBFUSCATION_TOOLKIT.desencrypt(input => UTL_RAW.cast_to_raw(lc_text),
 key => lr_key,
 encrypted_data => lt_enc_text);
RETURN lt_enc_text;
END;

/*
The function encrypt is used to store password in encrypted form in the database
*/

Decrypt

CREATE OR REPLACE FUNCTION decrypt (p_raw IN RAW, p_key VARCHAR2)
RETURN VARCHAR2 IS
 lc_decrypted VARCHAR2(32767);
 lc_return_dec VARCHAR2(32767);
 lr_key RAW(255) := UTL_RAW.cast_to_raw(p_key);
 BEGIN
 DBMS_OBFUSCATION_TOOLKIT.desdecrypt(input => p_raw,
 key => lr_key,
 decrypted_data => lc_decrypted);
 lc_return_dec := UTL_RAW.cast_to_varchar2(lc_decrypted);
 RETURN RTRIM(lc_return_dec, CHR(0));
END;

/*
The decrypt function retrieves the encrypted password as a plain text.
*/

 49

Chapter 6: Interface (UI) and Reports

Application URL : http://uahealthapp.eastus.cloudapp.azure.com:8080/HealthApp

PATIENT
Username: orlan23
Password: o123123

DOCTOR
Username: doc20
Password: mydoc20

ADMINISTRATOR

Username: admin
Password: pass

WEB APP WALKTHROUGH
DETAILED WALKTHROUGH VIDEO (DEMO WITH NARRATION) URL:
https://www.youtube.com/watch?v=R9R6UjR4-dU

STEPS IN DEMO
1) Signup as a patient (Few available STUDENT ID for signup: 58, 61, 64, 67, 70, 73, 77)
2) Test #1 - Student ID not present in database (Student not registered with University)
3) Test #2 - Student ID already present in patients table (Student already registered as patient)
4) Test #3 - username cannot be duplicate (needs to be said in voiceover - missed in video)
4) Enter correct credentials - Account created successfully
5) Change password
6) Test #4 - Enter Invalid Old Password
7) Enter correct old password and update the password
8) Test #5 - Sign in using old password - Error Thrown
9) Sign in using correct credentials (You can use the ID created through sign up or use the
patient credentials provided above)
10) Select a symptom (Please select “abdominal pain” as the doctor is assigned based on
the specialization, we have provided the credentials for a doctor that will get associated
with “abdominal pain”) and submit
11) In a new tab login as doctor (Doctor is assigned by matching the symptom type and the
specialization – Please use the Doctor login id and password provided above
12) Initial symptom, name of patient and patient ID is auto populated
13) Patient starts the chat
14) Doctor fills the patient form
15) Doctor can add additional symptom if required. If the case severity is high, ambulance
will be dispatched.
16) When the diagnosis is complete the case will be closed

 50

17) Chat ends - Case created
18) Patient views Case History (Access Left Navigation Pane for these options)

19) Patient views profile
20) Patient goes to book appointments (Access Left Navigation Pane for these options)

21) Select related Specialization and the available time slot - book appointment
22) Test #6 - Select same specialization to book another appointment, we will not be able to
see previously booked slot (As it is already booked)
23) Login as admin (Please use Administrator ID and Password provided above) and run
queries
24) Go to CRUD ops (Access Left Navigation Pane for these options)

25) Select Pharmacy - We insert new pharmacy
26) Delete a pharmacy
27) Similarly, we can perform CRUD operations on Labs, Ambulances and Delivery
Organizations table in our database.
28)

A lot of CRUD operations are being already performed within in the application logic

The Maven Web Java Project code can be accessed in our GitHub Repository
GitHub Repo URL: https://github.com/virajsingh91/HealthApp

 51

Chapter 7: Conclusions and implementation plan.

Lessons Learnt
1. Good communication was key to the way our team functioned.
2. Nothing is impossible if you start early, we achieved a lot by starting early.
3. Well defined scope helped develop a better product.
4. Importance of a good DB design and normalized tables.
5. Practice your presentation, it makes it easy to engage with your audience.
6. Conflicts led to better team chemistry and better software design.
7. Ask for help, ask your professor – it only makes your project better.
8. Never doubt your capabilities, if you have a great idea, believe in it and just go for it.

The sense of achievement and happiness of witnessing the end results is worth all the
efforts taken.

9. Learnt to listen and understand different perspectives and agree on a decision.
10. Most importantly, Trust! Trust your team members and their abilities.

Changes
Update the ER based on recommendations from

Steps to implement on a real-world database
This project document explains the scope of our project, the assumptions and conditions we
considered while building the application. It also includes the entities, relationship diagram,
normalized tables and its implementation in Oracle SQL.
To implement this application in the real world, the following steps will be helpful:

Prerequisites

1. Read the requirement document to understand our goal, this will give the
Administrator an opportunity to expand/change the scope of the project.

2. Update the ER if there are changes in the relationships, constraints or entities.
3. Normalize the tables into their highest forms.

Application

1. Choose a database that best suits the requirements (we used Oracle)
2. Modify and run the create table scripts with the correct syntax of the chosen database.
3. If you choose to build the database on a cloud platform (DBaaS) follow instructions

specific to that application. (like Amazon RDS, Azure SQL, Oracle DB, SAP Cloud
etc.). However, we do not recommend this for our application as there is no
significant benefit.

Web design and UI

1. The UI we developed is function over form. It was coded using JSP, Java, HTML and
CSS. It can be improved using React, Angular or Spring framework.

2. Password encryption using DBMS_OBFUSCATION_TOOLKIT, can be improved
using DES, AES etc.

3. SSL and TSL certificates to secure user data

 52

4. Any additional functionality that came from the updated requirements must be
incorporated as new features.

5. The chat-app was implemented on a Node.js, we recommend using third party
software like HubSpot (https://www.hubspot.com/)

Cloud Hosting

1. Azure provides reasonable pricing for the annual year plan as can be seen from the
table below.

Cost Breakup Assumptions
1. All employees hired are Graduate Assistants (GA’s) from the University of Arizona

which justifies the hourly rate of $15.00 per hour.
2. The developer and database administrator build the initial application in 3 months.
3. The application is maintained by one graduate assistant for approximately 8 months

(giving a total cycle of one year).

Cost Breakup
 RATE ($) QTY TOTAL COST ($)

PEOPLE
Front end developer 15/hr. 150 hrs. 2,250
Database Administrator 15/hr. 200 hrs. 3,000
Maintenance 15/hr. 300 hrs. 4,500

APPLICATION
Oracle DB - - -
Cloud Hosting* 149.88/mo. 12 mo. 1,798.51

TOTAL 11,548.51

*Microsoft Azure Estimate (generated on Azure calculator)

Your Estimate

Service type Custom
name

Region Description Estimated Cost

Virtual
Machines

West US 1 D2 v3 (2 vCPU(s), 8 GB RAM);

Windows – (OS Only); 1 year
reserved; 1 managed OS disks –
E6, 9,999 transaction units

$149.88

Support

Support $0.00
Licensing Program Microsoft Online

Services
Agreement

Monthly Total $149.88
Annual Total $1,798.51

Disclaimer

 53

All prices shown are in US Dollar ($). This is a summary estimate, not a quote. For up to date
pricing information please visit https://azure.microsoft.com/pricing/calculator/
This estimate was created at 12/12/2019 9:32:07 PM UTC.

https://azure.com/e/e0788c84714b451c82f41100c93c08b0 - Azure price calculator

 54

APPENDIX – Create Table Scripts

1. ACTUAL_LAB_TESTS

CREATE TABLE BITSPLEASE.ACTUAL_LAB_TESTS
 (
 ACTUALLABTESTID NUMBER (38,0),
 RESULT VARCHAR2(100 BYTE),
 LABID NUMBER (38,0),
 LABTESTID NUMBER (38,0),
 CONSTRAINT ACTUAL_LAB_TEST_PK PRIMARY KEY
(ACTUALLABTESTID),
 CONSTRAINT ACTUAL_LAB_TEST_FK FOREIGN KEY (LABID,
LABTESTID)
 REFERENCES BITSPLEASE.LAB_TEST_DONE_BY (LABID,
LABTESTID)
);

2. AMBULANCES

CREATE TABLE BITSPLEASE.AMBULANCES
 (
 AMBULANCEID NUMBER (38,0),
 VEHICLENUMBER VARCHAR2(20 BYTE),
 AVAILABILITY VARCHAR2(20 BYTE),
 CONSTRAINT AMULANCES_PK PRIMARY KEY (AMBULANCEID)
);

3. APPOINTMENT_TIME_SLOTS

CREATE TABLE BITSPLEASE.APPOINTMENT_TIME_SLOTS
 (
 SLOTID NUMBER (38,0),
 STARTTIME INTERVAL DAY (0) TO SECOND (6),
 ENDTIME INTERVAL DAY (0) TO SECOND (6),
 CONSTRAINT APPOINTMENT_TIME_SLOTS_PK PRIMARY KEY
(SLOTID)
);

4. APPOINTMENTS

CREATE TABLE BITSPLEASE.APPOINTMENTS
 (
 APPOINTMENTID NUMBER (38,0),
 TYPE VARCHAR2(20 BYTE),
 STARTTIME INTERVAL DAY (0) TO SECOND (6),
 ENDTIME INTERVAL DAY (0) TO SECOND (6),
 APPDATE DATE,
 PATIENTID NUMBER (38,0),
 DOCTORID NUMBER (38,0),

 55

 CONSTRAINT APPOINTMENT_PK PRIMARY KEY
(APPOINTMENTID),
 CONSTRAINT APPOINTMENT_DOCTOR_FK REFERENCES
 BITSPLEASE.DOCTORS(DOCTORID),
 CONSTRAINT APPOINTMENT_PATIENTS_FK REFERENCES
 BITSPLEASE.PATIENTS(PATIENTID)
);

5. BILLING_DETAILS

CREATE TABLE BITSPLEASE.BILLING_DETAILS
 (
 BILLID NUMBER (38,0),
 TOTAL_COST FLOAT (126),
 ADDITIONALCHARGES FLOAT (126),
 BILLDATE DATE,
 BILLSTATUS VARCHAR2(50 BYTE),
 INSCOMPANYID NUMBER (38,0),
 CASEID NUMBER (38,0),
 CONSTRAINT BILLING_DETAILS_PK PRIMARY KEY (BILLID),
 CONSTRAINT BILLING_INSURANCE_FK FOREIGN KEY
(INSCOMPANYID),
 REFERENCES BITSPLEASE.INSURANCE_COMPANIES
(INSCOMPANYID)
);

6. CASE_DETAILS

CREATE TABLE BITSPLEASE.CASE_DETAILS
 (
 CASEID NUMBER (38,0),
 STATUS VARCHAR2(20 BYTE),
 DATETIME TIMESTAMP (6),
 SEVERITY VARCHAR2(20 BYTE),
 DURATION_MIN FLOAT (126),
 DOCTORID NUMBER (38,0),
 PATIENTID NUMBER (38,0),
 CONSTRAINT CASEDETAILS_PK PRIMARY KEY (CASEID),
 CONSTRAINT CASEDETAILS_DOCTORS_FK FOREIGN KEY
(DOCTORID)
 REFERENCES BITSPLEASE.DOCTORS (DOCTORID),
 CONSTRAINT CASEDETAILS_PATIENTS_FK FOREIGN KEY
(PATIENTID)
 REFERENCES BITSPLEASE.PATIENTS (PATIENTID)
);

7. CASE_REPORT_LAB

CREATE TABLE BITSPLEASE.CASE_REPORT_LAB
(

 56

 REPORTID NUMBER (38,0),
 ACTUALLABTESTID NUMBER (38,0),
 CASEID NUMBER (38,0),
 CONSTRAINT CASE_MEDICALREPORT_FK FOREIGN KEY (REPORTID)
 REFERENCES BITSPLEASE.MEDICAL_REPORTS (REPORTID),
 CONSTRAINT CASE_ACTUALLAB_FK FOREIGN KEY
(ACTUALLABTESTID)
 REFERENCES BITSPLEASE.ACTUAL_LAB_TESTS
(ACTUALLABTESTID),
 CONSTRAINT CASE_CASEDETAIL_FK FOREIGN KEY (CASEID)

 REFERENCES BITSPLEASE.CASE_DETAILS (CASEID)
);

8. CASE_SYMPTOMS

CREATE TABLE BITSPLEASE.CASE_SYMPTOMS
 (
 CASEID NUMBER (38,0),
 SYMPTOMID NUMBER (38,0),
 CONSTRAINT CASE_SYMPTOMS_PK PRIMARY KEY (CASEID,
SYMPTOMID),
 CONSTRAINT CASE_SYMPTOMS_DETAILS_FK FOREIGN KEY
(CASEID)
 REFERENCES BITSPLEASE.CASE_DETAILS (CASEID),
 CONSTRAINT CASE_SYMPTOMS_FK2 FOREIGN KEY (SYMPTOMID)
 REFERENCES BITSPLEASE.SYMPTOMS (SYMPTOMID)
);

9. CHAT_DETAILS

CREATE TABLE BITSPLEASE.CHAT_DETAILS
 (
 CHATID NUMBER,
 DOCID NUMBER,
 PID NUMBER,
 CHAT_ACTIVE NUMBER,
 INITIAL_SYMPTOMS VARCHAR2(250 BYTE),
 CONSTRAINT CHAT_DETAILS_PK PRIMARY KEY (CHATID),
 CONSTRAINT CHAT_DETAILS_DOCTORS_FK1 FOREIGN KEY
(DOCID)
 REFERENCES BITSPLEASE.DOCTORS (DOCTORID),
 CONSTRAINT CHAT_DETAILS_FK1 FOREIGN KEY (PID)
 REFERENCES BITSPLEASE.PATIENTS (PATIENTID)
);

10. CREW_DRIVERS

CREATE TABLE BITSPLEASE.CREW_DRIVERS
 (

 57

 CREWID NUMBER (38,0),
 DRIVERID NUMBER (38,0),
 CONSTRAINT CREW_DRIVERS_PK PRIMARY KEY (CREWID,
DRIVERID),
 CONSTRAINT CREW_DRIVERS_CREWS_FK FOREIGN KEY
(CREWID)
 REFERENCES BITSPLEASE.CREWS (CREWID),
 CONSTRAINT CREW_DRIVERS_DRIVER_FK FOREIGN KEY
(DRIVERID)
 REFERENCES BITSPLEASE.DRIVERS (DRIVERID)
);

11. CREW_EMT

CREATE TABLE BITSPLEASE.CREW_EMT
 (
 CREWID NUMBER (38,0),
 EMTID NUMBER (38,0),
 CONSTRAINT CREW_EMT_PK PRIMARY KEY (CREWID, EMTID),
 CONSTRAINT CREWS_EMT_FK FOREIGN KEY (EMTID)
 REFERENCES BITSPLEASE.EMT (EMTID),
 CONSTRAINT CREWS_FK FOREIGN KEY (CREWID)
 REFERENCES BITSPLEASE.CREWS (CREWID)
);

12. CREW_NURSES

CREATE TABLE BITSPLEASE.CREW_NURSES
 (
 CREWID NUMBER (38,0),
 NURSEID NUMBER (38,0),
 CONSTRAINT CREW_NURSES_PK PRIMARY KEY (CREWID,
NURSEID),
 CONSTRAINT CREWS_NURSES_FK FOREIGN KEY (CREWID)
 REFERENCES BITSPLEASE.CREWS (CREWID),
 CONSTRAINT NURSES_FK FOREIGN KEY (NURSEID)
 REFERENCES BITSPLEASE.NURSES (NURSEID)
);

13. CREWS

CREATE TABLE BITSPLEASE.CREWS
 (
 CREWID NUMBER (38,0),
 CREWNAME VARCHAR2(20 BYTE),
 CONSTRAINT CREWS_PK PRIMARY KEY (CREWID)
);

14. DELIVERY_ASSOCIATES

 58

CREATE TABLE BITSPLEASE.DELIVERY_ASSOCIATES
 (
 DELASSOCIATEID NUMBER (38,0),
 DELASSOCIATENAME VARCHAR2(100 BYTE),
 DLNUMBER VARCHAR2(20 BYTE),
 DELORGID NUMBER,
 SHIFTSTARTTIME INTERVAL DAY (0) TO SECOND (6),
 SHIFTENDTIME INTERVAL DAY (0) TO SECOND (6),
 CONSTRAINT DELIVERY_ASSOCIATES_PK PRIMARY KEY
(DELASSOCIATEID),
 CONSTRAINT DELIVERYASSOCIATES_ORG_FK FOREIGN KEY
(DELORGID)
 REFERENCES BITSPLEASE.DELIVERY_ORGANIZATIONS (DELORGID)
);

15. DELIVERY_ORGANIZATIONS

CREATE TABLE BITSPLEASE.DELIVERY_ORGANIZATIONS
 (
 DELORGID NUMBER,
 ORGANIZATIONNAME VARCHAR2(50 BYTE),
 NOOFEMPLOYEES NUMBER (38,0),
 BUILDINGNUMBER VARCHAR2(100 BYTE),
 STREET VARCHAR2(100 BYTE),
 ZIP NUMBER (38,0),
 PHONENO VARCHAR2(20 BYTE),
 EMAILADDRESS VARCHAR2(50 BYTE),
 CONSTRAINT DELIVERYORGANIZATIONS_PK PRIMARY KEY
(DELORGID),
 CONSTRAINT CHK_PHONE_DELORG CHECK (phoneno not like '%[^0-9]%')
);

16. DIAGNOSIS

CREATE TABLE BITSPLEASE.DIAGNOSESs
(
 ICDCODE VARCHAR2(20 BYTE),
 DESCRIPTION VARCHAR2(255 BYTE),
 VERSION VARCHAR2(20 BYTE),
 CONSTRAINT DIAGNOSIS_PK PRIMARY KEY (ICDCODE),
);

17. DIAGNOSIS_DETAILS

CREATE TABLE BITSPLEASE.DIAGNOSIS_DETAILS
 (
 CASEID NUMBER (38,0),
 ICDCODE VARCHAR2(20 BYTE),
 NOTES VARCHAR2(255 BYTE),
 COMMENTS VARCHAR2(255 BYTE),

 59

 DIAGNOSIS_COMPLETE VARCHAR2(20 BYTE),
 CONSTRAINT DIAGNOSIS_DETAILS PRIMARY KEY (CASEID, ICDCODE),
 CONSTRAINT DIAGNOSIS_STATUS CHECK (diagnosis_complete
IN('Yes','No')),
 CONSTRAINT DIAGNOSISDET_CASEDET_FK FOREIGN KEY (CASEID)
 REFERENCES BITSPLEASE.CASE_DETAILS (CASEID),
 CONSTRAINT DIAGNOSISDET_DIAGNOSES_FK FOREIGN KEY (ICDCODE)
 REFERENCES BITSPLEASE.DIAGNOSES (ICDCODE)
);

18. DOCTORS

CREATE TABLE BITSPLEASE.DOCTORS
 (
 DOCTORID NUMBER (38,0),
 REGISTRATIONNO VARCHAR2(20 BYTE),
 HIGHESTDEGREE VARCHAR2(100 BYTE),
 ONCALL NUMBER (1,0),
 USERNAME VARCHAR2(50 BYTE),
 PASSWORD VARCHAR2(50 BYTE),
 CONSTRAINT DOCTORS_PK PRIMARY KEY (DOCTORID),
 CONSTRAINT DOCTOR_EMPLOYEE_FK FOREIGN KEY (DOCTORID)
 REFERENCES BITSPLEASE.EMPLOYEES (EMPLOYEEID)
);

19. DRIVERS

 CREATE TABLE BITSPLEASE.DRIVERS
 (
 DRIVERID NUMBER (38,0),
 DLNO VARCHAR2(20 BYTE),
 CONSTRAINT DRIVERS_PK PRIMARY KEY (DRIVERID),
 CONSTRAINT EMPLOYEE_DRIVERS_FK FOREIGN KEY (DRIVERID)
)

20. DRUG_DETAILS

CREATE TABLE BITSPLEASE.DRUG_DETAILS
 (
 PRESCRIPTIIONID NUMBER (38,0),
 MEDICINEID NUMBER (38,0),
 FREQUENCY VARCHAR2(255 BYTE),
 COMPOSITION VARCHAR2(255 BYTE),
 CONSTRAINT DRUG_DETAILS_PK PRIMARY KEY
 (PRESCRIPTIIONID, MEDICINEID),
 CONSTRAINT DRUG_DETAILS_MED_FK FOREIGN KEY (MEDICINEID)
 REFERENCES BITSPLEASE.MEDICINES (MEDICINEID),
 CONSTRAINT DRUG_DETAILS_PRESC_FK FOREIGN KEY
(PRESCRIPTIIONID)
 REFERENCES BITSPLEASE.PRESCRIPTIONS (PRESCRIPTIONID)

 60

)

21. EMPLOYEE_RATINGS

CREATE TABLE BITSPLEASE.EMPLOYEE_RATINGS
 (
 EMPLOYEERATINGID NUMBER (38,0),
 REMARKS VARCHAR2(255 BYTE),
 RATINGDATE DATE,
 RATINGID NUMBER (38,0),
 CONSTRAINT EMPLOYEERATING_PK PRIMARY KEY
(EMPLOYEERATINGID),
 CONSTRAINT EMPLOYEERATINGS_RATING_FK FOREIGN KEY
(RATINGID)
 REFERENCES BITSPLEASE.RATINGS (RATINGID)
);

22. EMPLOYEE_RATINGS_RECIEVED

CREATE TABLE BITSPLEASE.EMPLOYEE_RATINGS_RECEIVED
 (
 EMPLOYEEID NUMBER (38,0),
 EMPLOYEERATINGID NUMBER (38,0),
 CONSTRAINT EMPID_EMPRATING_PK PRIMARY KEY (EMPLOYEEID,
 EMPLOYEERATINGID),
 CONSTRAINT EMPRATINGID_FK FOREIGN KEY (EMPLOYEERATINGID)
 REFERENCES BITSPLEASE.EMPLOYEE_RATINGS (EMPLOYEERATINGID),
 CONSTRAINT EMP_EMPRATING_FK FOREIGN KEY (EMPLOYEEID)
 REFERENCES BITSPLEASE.EMPLOYEES (EMPLOYEEID)
);

23. EMPLOYEES

CREATE TABLE BITSPLEASE.EMPLOYEES
 (
 EMPLOYEEID NUMBER (38,0),
 FIRSTNAME VARCHAR2(20 BYTE),
 LASTNAME VARCHAR2(20 BYTE),
 MIDDLEINITIAL VARCHAR2(20 BYTE),
 HIREDATE DATE,
 DATEOFBIRTH DATE,
 AGE NUMBER (38,0),
 GENDER VARCHAR2(10 BYTE),
 SSN NUMBER (38,0),
 PHONENUMBER NUMBER (38,0),
 LOYALTYPOINTS NUMBER (38,0),
 EMAILADDRESS VARCHAR2(50 BYTE),
 SHIFTSTARTTIME INTERVAL DAY (0) TO SECOND (6),
 SHIFTENDTIME INTERVAL DAY (0) TO SECOND (6),
 TYPE VARCHAR2(20 BYTE),

 61

 CONSTRAINT EMPLOYEES_PK PRIMARY KEY (EMPLOYEEID),
 CONSTRAINT EMPLOYEES_SSN_UK UNIQUE (SSN),
 CONSTRAINT CHK_PHONE_EMPLOYEE CHECK (phonenumber not like '%[^0-
9]%')
) ;

24. EMT

CREATE TABLE BITSPLEASE.EMT
 (
 EMTID NUMBER (38,0),
 LEVELS VARCHAR2(20 BYTE),
 CONSTRAINT EMT_PK PRIMARY KEY (EMTID),
 CONSTRAINT EMT_EMPLOYEE_FK FOREIGN KEY (EMTID)
 REFERENCES BITSPLEASE.EMPLOYEES (EMPLOYEEID)
) ;

25. FEEDBACKS

CREATE TABLE BITSPLEASE.FEEDBACKS
 (
 FEEDBACKID NUMBER (38,0),
 COMMENTS VARCHAR2(255 BYTE),
 DATETIME TIMESTAMP (6),
 PATIENTID NUMBER (38,0),
 CONSTRAINT FEEDBACKS_PK PRIMARY KEY (FEEDBACKID),
 CONSTRAINT FEEDBACKS_PATIENT_FK FOREIGN KEY (PATIENTID)
 REFERENCES BITSPLEASE.PATIENTS (PATIENTID)
) ;

26. GENERAL_PHYSICIANS

CREATE TABLE BITSPLEASE.GENERAL_PHYSICIANS
 (
 GENERALPHYSICIANID NUMBER (38,0),
 ISTRAINEE VARCHAR2(20 BYTE),
 CERTIFICATION VARCHAR2(150 BYTE),
 CERTEXPDATE DATE,
 TYPE VARCHAR2(20 BYTE),
 CONSTRAINT GENERAL_PHY_PK PRIMARY KEY
(GENERALPHYSICIANID),
 CONSTRAINT GENERAL_PHYSICIANS_DOCTOR_FK FOREIGN KEY
 (GENERALPHYSICIANID) REFERENCES BITSPLEASE.DOCTORS
(DOCTORID),
 CONSTRAINT GENERAL_PHY_CHECK CHECK (isTrainee='YES' OR
isTrainee='NO')
) ;

27. INSURANCE_COMPANIES

 62

CREATE TABLE BITSPLEASE.INSURANCE_COMPANIES
 (INSCOMPANYID NUMBER NOT NULL ENABLE,
 INSCOMPANYNAME VARCHAR2(100 BYTE),
 INSCOMLICENSENO VARCHAR2(20 BYTE),
 ADDRESS VARCHAR2(500 BYTE),
 EMAIL VARCHAR2(100 BYTE),
 PHONENO VARCHAR2(20 BYTE),
 CONSTRAINT INSURANCE_COMPANIES_PK PRIMARY KEY (
INSCOMPANYID)
CONSTRAINT CHK_PHONE_INSCOMP CHECK (phoneno not like '%[^0-9]%')
ENABLE
);

28. LAB_TEST_DONE_BY

CREATE TABLE BITSPLEASE.LAB_TEST_DONE_BY
 (LABID NUMBER (38,0),
 LABTESTID NUMBER(38,0),
 CONSTRAINT LAB_TEST_DONE_BY_PK PRIMARY KEY (LABID ,
LABTESTID)
CONSTRAINT LAB_TEST_DONE_BY_LAB_FK FOREIGN KEY (LABID)
 REFERENCES BITSPLEASE.LABS (LABID) ON DELETE CASCADE
ENABLE,
 CONSTRAINT LAB_TEST_DONE_BY_LABTEST_FK FOREIGN KEY (
LABTESTID)
 REFERENCES BITSPLEASE.LAB_TESTS (TESTID) ON DELETE CASCADE
ENABLE
);

29. LAB_TESTS

CREATE TABLE BITSPLEASE.LAB_TESTS
 (TESTID NUMBER(38,0) NOT NULL ENABLE,
 TESTNAME VARCHAR2(100 BYTE),
 FEES FLOAT(126),
 CONSTRAINT LAB_TESTS_PK PRIMARY KEY (TESTID)
);

30. LABS

CREATE TABLE BITSPLEASE.LABS
 (LABID NUMBER(38,0) NOT NULL ENABLE,
 LABNAME VARCHAR2(20 BYTE),
 PHONENUMBER VARCHAR2(20 BYTE),
 BUILDINGNO VARCHAR2(50 BYTE),
 ZIP VARCHAR2(50 BYTE),
 STREET VARCHAR2(50 BYTE),
 EMAILADDRESS VARCHAR2(50 BYTE),
 CONSTRAINT LABS_PK PRIMARY KEY (LABID)

 63

 CONSTRAINT CHK_PHONE_LABS CHECK (phonenumber not like '%[^0-
9]%') ENABLE
);

31. MEDICALREPORTS

CREATE TABLE BITSPLEASE.MEDICALREPORTS
 (REPORTID NUMBER(38,0) NOT NULL ENABLE,
 REPDATE DATE,
 REPORTNAME VARCHAR2(20 BYTE),
 PATIENTID NUMBER(38,0),
 ACTUALLABTESTID NUMBER,
 PRIMARY KEY (REPORTID)
 FOREIGN KEY (PATIENTID)
 REFERENCES BITSPLEASE.PATIENTS (PATIENTID) ENABLE,
 FOREIGN KEY (ACTUALLABTESTID)
 REFERENCES BITSPLEASE.ACTUAL_LAB_TESTS (ACTUALLABTESTID)
ENABLE
);

32. MEDICINE_DRUGS

CREATE TABLE BITSPLEASE . MEDICINE_DRUGS
 (MEDICINEID NUMBER(38,0),
 DRUGS VARCHAR2(100 BYTE) NOT NULL ENABLE,
 CONSTRAINT MEDICINE_DRUG_PK PRIMARY KEY (MEDICINEID ,
DRUGS)
 FOREIGN KEY (MEDICINEID)
 REFERENCES BITSPLEASE.MEDICINES (MEDICINEID) ENABLE
);

33. MEDICINES

CREATE TABLE BITSPLEASE.MEDICINES
 (MEDICINEID NUMBER(38,0),
 PRODUCTNAME VARCHAR2(20 BYTE),
 BRAND VARCHAR2(20 BYTE),
 EXPIRYDATE DATE,
 TYPE VARCHAR2(20 BYTE),
 COUNT NUMBER(38,0),
 COST_PU VARCHAR2(20 BYTE),
 CONSTRAINT MEDICINES PRIMARY KEY (MEDICINEID)
);

34. NURSES

CREATE TABLE BITSPLEASE.NURSES
 (NURSEID NUMBER(38,0) NOT NULL ENABLE,
 NURSINGLICENSENO VARCHAR2(20 BYTE),

 64

 TYPE VARCHAR2(100 BYTE),
 HOURLYBILLINGRATE FLOAT(126),
 CONSTRAINT NURSES_PK PRIMARY KEY (NURSEID)
 CONSTRAINT NURSE_EMPLOYEE_FK FOREIGN KEY (NURSEID)
 REFERENCES BITSPLEASE.EMPLOYEES (EMPLOYEEID) ENABLE
)

35. PATHOLOGISTS

CREATE TABLE BITSPLEASE.PATHOLOGISTS
 (PATHOLOGISTID NUMBER(38,0),
 CERTIFICATION VARCHAR2(100 BYTE),
 LABID NUMBER(38,0),
 CONSTRAINT PATHOLOGISTS_PK PRIMARY KEY (PATHOLOGISTID)
 CONSTRAINT PATHOLOGISTS_LABS_FK FOREIGN KEY (LABID)
 REFERENCES BITSPLEASE.LABS (LABID) ENABLE,
 CONSTRAINT PATHOLOGISTS_EMP_FK FOREIGN KEY (PATHOLOGISTID)
 REFERENCES BITSPLEASE.EMPLOYEES (EMPLOYEEID) ENABLE
)

36. PATIENTS

CREATE TABLE BITSPLEASE.PATIENTS
 (PATIENTID NUMBER(38,0) NOT NULL ENABLE,
 USERNAME VARCHAR2(20 BYTE) NOT NULL ENABLE,
 PASSWORD VARCHAR2(255 BYTE) NOT NULL ENABLE,
 STUDENTID NUMBER(38,0) NOT NULL ENABLE,
 CONSTRAINT PATIENTS_PK PRIMARY KEY (PATIENTID)
CONSTRAINT STUDENTID_UNIQUE UNIQUE (STUDENTID)
CONSTRAINT USERNAME_UNIQUE UNIQUE (USERNAME)
 CONSTRAINT STUDENTID_FK FOREIGN KEY (STUDENTID)
 REFERENCES BITSPLEASE.STUDENTS (STUDENTID) ENABLE
);

37. PRESCRIPTIONS

CREATE TABLE BITSPLEASE.PATIENTS_PRECRIPTIONS
 (PATIENTID NUMBER(38,0) NOT NULL ENABLE,
 PRESCRIPTIONID NUMBER(38,0) NOT NULL ENABLE,
 CONSTRAINT PATIENTS_PRECRIPTIONS_PK PRIMARY KEY (PATIENTID,
PRESCRIPTIONID)
CONSTRAINT PATIENTS_PRESCRIPTIONS_FK FOREIGN KEY (PATIENTID)
 REFERENCES BITSPLEASE.PATIENTS (PATIENTID) ENABLE,
 CONSTRAINT PRESCRIPTIONS_PATIENTS_FK FOREIGN KEY
(PRESCRIPTIONID)
 REFERENCES BITSPLEASE.PRESCRIPTIONS (PRESCRIPTIONID) ENABLE
);

38. PHAR_DELASSOC

 65

CREATE TABLE BITSPLEASE.PHAR_DELASSOC
 (DELASSOCIATEID NUMBER(38,0),
 PHARMACYID NUMBER(38,0),
 CONSTRAINT PHAR_DELASSOC_PK PRIMARY KEY (DELASSOCIATEID,
PHARMACYID)
 CONSTRAINT DELASSOCIATE_FK FOREIGN KEY (DELASSOCIATEID)
 REFERENCES BITSPLEASE.DELIVERY_ASSOCIATES (DELASSOCIATEID)
ENABLE,
 CONSTRAINT PHARMACY_FK FOREIGN KEY (PHARMACYID)
 REFERENCES BITSPLEASE.PHARMACIES (PHARMACYID) ENABLE
);

39. PHAR_PROMO

CREATE TABLE BITSPLEASE.PHAR_PROMO
 (PHARMACYID NUMBER(38,0),
 PROMOTIONID NUMBER(38,0),
 CONSTRAINT PHAR_PROMO_PK PRIMARY KEY (PHARMACYID,
PROMOTIONID)
 CONSTRAINT PHARMACY_PROMO_FK FOREIGN KEY (PHARMACYID)
 REFERENCES BITSPLEASE.PHARMACIES (PHARMACYID) ENABLE,
 CONSTRAINT PHARMACY_PROMO_FK2 FOREIGN KEY (PROMOTIONID)
 REFERENCES BITSPLEASE.PROMOTIONS (PROMOTIONID) ENABLE
);

40. PHARM_MEDICINES

CREATE TABLE BITSPLEASE.PHARM_MEDICINES
 (MEDICINEID NUMBER(38,0),
 PHARMACYID NUMBER(38,0),
 CONSTRAINT PHARM_MEDICINES PRIMARY KEY (MEDICINEID,
PHARMACYID)
CONSTRAINT PHARM_MEDICINEID_FK FOREIGN KEY (MEDICINEID)
 REFERENCES BITSPLEASE.MEDICINES (MEDICINEID) ENABLE,
 CONSTRAINT PHARM_PHARMACYID_FK FOREIGN KEY (PHARMACYID)
 REFERENCES BITSPLEASE.PHARMACIES (PHARMACYID) ENABLE
);

41. PHARM_PHARMACIST

CREATE TABLE BITSPLEASE.PHARM_PHARMACIST
 (PHARMACYID NUMBER(38,0),
 PHARMACISTID NUMBER(38,0),
 CONSTRAINT PHARM_PHARMACIST_PK PRIMARY KEY (PHARMACYID,
PHARMACISTID)
 CONSTRAINT PHARM_PHARMACY_FK1 FOREIGN KEY (PHARMACYID)
 REFERENCES BITSPLEASE.PHARMACIES (PHARMACYID) ENABLE,
 FOREIGN KEY (PHARMACISTID)
 REFERENCES BITSPLEASE.PHARMACISTS (PHARMACISTID) ENABLE
);

 66

42. PHARMACIES

CREATE TABLE BITSPLEASE.PHARMACIES
 (PHARMACYID NUMBER(38,0) NOT NULL ENABLE,
 BULDINGNO VARCHAR2(100 BYTE),
 STREET VARCHAR2(100 BYTE),
 ZIP NUMBER(38,0),
 PHONENO NUMBER(38,0),
 EMAILADDRESS VARCHAR2(50 BYTE),
 PHARMACYNAME VARCHAR2(50 BYTE),
 CONSTRAINT PHARMACY_PK PRIMARY KEY (PHARMACYID)
 CONSTRAINT CHK_PHONE_PHARMACIES CHECK (phoneno not like '%[^0-9]%')
ENABLE
);

43. PHARMACISTS

CREATE TABLE BITSPLEASE.PHARMACISTS
 (PHARMACISTID NUMBER(38,0) NOT NULL ENABLE,
 PHARMACISTICENSENO VARCHAR2(20 BYTE),
 CONSTRAINT PHARMACIST_PK PRIMARY KEY (PHARMACISTID)
CONSTRAINT EMPLOYEE_PHARMACIST_FK FOREIGN KEY (PHARMACISTID)
 REFERENCES BITSPLEASE.EMPLOYEES (EMPLOYEEID) ENABLE
);

44. PRESCRIPTIONS

CREATE TABLE BITSPLEASE.PRESCRIPTIONS
 (PRESCRIPTIONID NUMBER(38,0) NOT NULL ENABLE,
 PRESCRPTIONDATE TIMESTAMP (6),
 PHARMACISTID NUMBER(38,0),
 CASEID NUMBER(38,0),
 DOCTORID NUMBER(38,0),
 PHARMACYID NUMBER(38,0),
 CONSTRAINT PRESCRIPTIONS_PK PRIMARY KEY (PRESCRIPTIONID)
CONSTRAINT PRES_PHARACY_FK FOREIGN KEY (PHARMACISTID)
 REFERENCES BITSPLEASE.PHARMACISTS (PHARMACISTID) ENABLE,
 CONSTRAINT PRES_CASEDETAILS_FK FOREIGN KEY (CASEID)
 REFERENCES BITSPLEASE.CASE_DETAILS (CASEID) ENABLE,
 CONSTRAINT PRES_DOCTORS_FK FOREIGN KEY (DOCTORID)
 REFERENCES BITSPLEASE.DOCTORS (DOCTORID) ENABLE,
 CONSTRAINT PRES_PHARMACIES_FK FOREIGN KEY (PHARMACYID)
 REFERENCES BITSPLEASE.PHARMACIES (PHARMACYID) ENABLE
);

 45. PRESCRIPTIONS_LABTESTS

CREATE TABLE BITSPLEASE.PRESCRIPTIONS_LABTESTS
 (TESTID NUMBER(38,0),

 67

 PRESCRIPTIONID NUMBER(38,0),
 CONSTRAINT PRESCRIPTIONS_LABTESTS_PK PRIMARY KEY (TESTID,
PRESCRIPTIONID)
CONSTRAINT PRESC_LABTESTS_FK FOREIGN KEY (TESTID)
 REFERENCES BITSPLEASE.LAB_TESTS (TESTID) ENABLE,
 CONSTRAINT LABTESTS_PRES_FK FOREIGN KEY (PRESCRIPTIONID)
 REFERENCES BITSPLEASE.PRESCRIPTIONS (PRESCRIPTIONID) ENABLE
);

46. PROMOTIONS

CREATE TABLE BITSPLEASE.PROMOTIONS
 (PROMOTIONID NUMBER(38,0),
 DISCOUNT FLOAT(126),
 STARTDATE DATE,
 ENDDATE DATE,
 CONSTRAINT PROMOTIONS_PK PRIMARY KEY (PROMOTIONID)
);

47. RATINGS

CREATE TABLE BITSPLEASE.RATINGS
 (RATINGID NUMBER(38,0) NOT NULL ENABLE,
 DESCRIPTION VARCHAR2(255 BYTE) NOT NULL ENABLE,
 PRIMARY KEY (RATINGID)
);

48. SPECIALISTS

CREATE TABLE BITSPLEASE.SPECIALISTS
 (SPECIALISTID NUMBER(38,0),
 SPECIALIZATIONID NUMBER(38,0),
 ISPERMANENT NUMBER,
 CONSTRAINT SPECIALISTS_PK PRIMARY KEY (SPECIALISTID)
CONSTRAINT SPECIALISTS_CHK1 CHECK (ISPERMANENT='1' OR
ISPERMANENT='0') ENABLE,
 CONSTRAINT SPECIALISTS_DOCTOR_FK FOREIGN KEY (SPECIALISTID)
 REFERENCES BITSPLEASE.DOCTORS (DOCTORID) ENABLE,
 CONSTRAINT SPECIALIZATIONS_FK FOREIGN KEY (SPECIALIZATIONID)
 REFERENCES BITSPLEASE.SPECIALIZATIONS (SPECIALIZATIONID)
ENABLE
)

49. SPECIALIZATIONS

CREATE TABLE BITSPLEASE.SPECIALIZATIONS
 (SPECIALIZATIONID NUMBER NOT NULL ENABLE,
 SPECIALIZATIONNAME VARCHAR2(50 BYTE),
 DESCRIPTION VARCHAR2(255 BYTE),
 CONSTRAINT SPECIALIZATIONS_PK PRIMARY KEY (SPECIALIZATIONID)

 68

);

50. STUDENTS

CREATE TABLE BITSPLEASE.STUDENTS
 (STUDENTID NUMBER(38,0) NOT NULL ENABLE,
 FIRSTNAME VARCHAR2(20 BYTE),
 MIDDLEINITIAL VARCHAR2(20 BYTE),
 LASTNAME VARCHAR2(20 BYTE),
 BLOODGROUP VARCHAR2(20 BYTE),
 EMAILADDRESS VARCHAR2(50 BYTE),
 PHONENO NUMBER(10,0),
 BUILDINGNO VARCHAR2(20 BYTE),
 STREET VARCHAR2(20 BYTE),
 ZIP VARCHAR2(20 BYTE),
 GENDER VARCHAR2(20 BYTE),
 INSCOMPANYID NUMBER(38,0),
 DATEOFBIRTH DATE,
 AGE NUMBER,
 CITY VARCHAR2(20 BYTE),
 STATE VARCHAR2(20 BYTE),
 CONSTRAINT STUDENTS_PK PRIMARY KEY (STUDENTID)
 CONSTRAINT CHK_PHONE_STUDENT CHECK (phoneno not like '%[^0-9]%')
ENABLE,
 CONSTRAINT STUDENT_INSCOMP_FK FOREIGN KEY (INSCOMPANYID)
 REFERENCES BITSPLEASE.INSURANCE_COMPANIES (INSCOMPANYID)
ENABLE
);

51. SYMPTOMS

CREATE TABLE BITSPLEASE.SYMPTOMS
 (SYMPTOMID NUMBER(38,0),
 NAME VARCHAR2(50 BYTE),
 TYPE VARCHAR2(50 BYTE),
 CONSTRAINT SYMPTOMS_PK PRIMARY KEY (SYMPTOMID)
);

52. TRIP_DETAILS
CREATE TABLE BITSPLEASE.TRIP_DETAILS
 (TRIPID NUMBER(38,0) NOT NULL ENABLE,
 TIMEOFTRIP TIMESTAMP (6),
 STREET VARCHAR2(100 BYTE),
 ZIP NUMBER,
 BUILDINGNO VARCHAR2(100 BYTE),
 CREWID NUMBER(38,0),
 AMBULANCEID NUMBER(38,0),
 CASEID NUMBER,
 CONSTRAINT TRIP_DETAILS_PK PRIMARY KEY (TRIPID)
CONSTRAINT TRIP_DETAILS_CREWS_FK FOREIGN KEY (CREWID)

 69

 REFERENCES BITSPLEASE.CREWS (CREWID) ENABLE,
 CONSTRAINT TRIP_DETAILS_CASEID_FK FOREIGN KEY (CASEID)
 REFERENCES BITSPLEASE.CASE_DETAILS (CASEID) ENABLE,
 CONSTRAINT TRIP_DETAILS_AMBULANCES_FK FOREIGN KEY
(AMBULANCEID)
 REFERENCES BITSPLEASE.AMBULANCES (AMBULANCEID) ON DELETE
CASCADE ENABLE
);

 70

References

User Interface
• https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css
• https://code.jquery.com/jquery-3.3.1.slim.min.js
• integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo
• https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js
• integrity="sha384-JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B07jRM"
• https://bootsnipp.com/snippets/dldxB
• Left Navigation Pane:

https://www.w3schools.com/howto/tryit.asp?filename=tryhow_js_sidenav
• Chat app: https://github.com/www-leafie-io/chat

Function

• https://jameshuangsj.wordpress.com/2019/05/09/data-encryption-and-decryption-
in-oracle/

